Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

GUO Jianyou, LIU Quan, NIU Zhongming, HENG Taihua, WANG Zhangyin, SHI Min, CAO Xueneng. Progress on the Research of Nuclear Single Particle Resonant States[J]. Nuclear Physics Review, 2018, 35(4): 401-408. doi: 10.11804/NuclPhysRev.35.04.401
Citation: GUO Jianyou, LIU Quan, NIU Zhongming, HENG Taihua, WANG Zhangyin, SHI Min, CAO Xueneng. Progress on the Research of Nuclear Single Particle Resonant States[J]. Nuclear Physics Review, 2018, 35(4): 401-408. doi: 10.11804/NuclPhysRev.35.04.401

Progress on the Research of Nuclear Single Particle Resonant States

doi: 10.11804/NuclPhysRev.35.04.401
Funds:  National Natural Science Foundation of China (11575002, 11575001, 11205004, 11875070, 11805004, 11505001)
  • Received Date: 2018-09-26
  • Rev Recd Date: 2018-11-27
  • Publish Date: 2020-05-03
  • Resonance is an interesting phenomenon in nature. In nuclear physics, resonance plays an important role in the formation of many exotic phenomena. This paper introduces the recently developed RMF-CSM, RMFCGF, and RMF-CMR methods and their researches on nuclear single-particle resonances. The energies and widths of the single-particle resonant states in 120Sn and 31Ne and their evolution to mass number and deformation are given. In addition, the physical mechanism of the halo formation in 19C, 31Ne and 39Mg and the cause of energy level inversion near N=20 are analyzed. In particular, the newly developed RMF-CMR approach has been successful in describing stable and exotic nuclei and supports the prediction that Zr isotopes exist in a giant halo.
  • [1] MENG J, RING J. Phys Rev Lett, 1996, 77:3963; 1998, 80:460.
    [2] ZHOU S G, MENG J, RING P, et al. Phys Rev C, 2010, 82:011301(R).
    [3] LIU Q, GUO J Y, NIU Z M, et al. Phys Rev C, 2012, 86:054312.
    [4] HAMAMOTO I. J Phys G:Nucl Part Phys, 2010, 37:055102.
    [5] CAO L G MA Z Y. Phys Rev C, 2002, 66:024311.
    [6] ZHANG S S, SMITH M S, ARBANAS G et al. Phys Rev C, 2012, 86:032802(R).
    [7] FAESTERMANN T, MOHR P, HERTENBERGER R, et al. Phys Rev C, 2015, 92:052802(R).
    [8] SHI M, SHI X X, NIU Z M, et al. Eur Phys J A, 2017, 53:40.
    [9] MYO T, KIKUCHI Y, MASUI H, et al. Prog Part Nucl Phys, 2014, 79:1.
    [10] MICHEL N. J Phys G:Nucl Part Phys, 2009, 36:013101.
    [11] MICHEL N, MATSUYANAGI K, STOITSOV M. Phys Rev C, 2008, 78:044319.
    [12] SEBA P. Lett Math Phys, 1988, 16:51.
    [13] IVANOV I A, HO Y K. Phys Rev A, 2004, 69:023407.
    [14] PESTKA G, BYLICKI M, KARWOWSKI J. J Phys B:At Mol Opt Phys, 2006, 39:2979.
    [15] ALHAIDARI A D. Phys Rev A, 2007, 75:042707.
    [16] ACKAD E, HORBATSCH M. Phys Rev A, 2007, 76:022503.
    [17] BYLICKI M, PESTKA G, KARWOWSKI J. Phys Rev A, 2008, 77:044501.
    [18] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl Phys, 2006, 57:470.
    [19] RING P, LITVINOVA E, VRETENAR D. Prog Part Nucl Phys, 2007, 59:393.
    [20] SANDULESCU N, GENG L S, TOKI H, et al. Phys Rev C, 2003, 68:054323.
    [21] ZHANG S S, MENG J, ZHOU S G, et al. Phys Rev C, 2004, 70:034308.
    [22] ZHANG L, ZHOU S G, MENG J, et al. Phys Rev C, 2008, 77:014312.
    [23] SUN T T, ZHANG S Q, ZHANG Y, et al. Phys Rev C, 2014, 90:054321.
    [24] GUO J Y, FANG X Z, JIAO P, et al. Phys Rev C, 2010, 82:034318.
    [25] AGUILAR J, COMBES J M. Commun Math Phys, 1971, 22:269.
    [26] BALSLEV E, JCOMBES J M. Commun Math Phys, 1971, 22:280.
    [27] SIMON B. Commun Math. Phys, 1972, 27:1.
    [28] SHI M, LIU Q, NIU Z M, et al. Phys Rev C, 2014, 90:034319.
    [29] ZHU Z L, NIU Z M, LI D P, et al. Phys Rev C, 2014, 89:034307.
    [30] SHI M, LIU Q, NIU Z M, et al. Phys Rev C, 2014, 90:034319.
    [31] SHI M, GUO J Y, LIU Q, et al. Phys Rev C, 2015, 92:054313.
    [32] LI N, SHI M, GUO J Y, et al. Phys Rev Lett, 2016, 117:062502.
    [33] DING K M, SHI M, GUO J Y, et al. Phys Rev C, 2018, 98:014316.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1561) PDF downloads(125) Cited by()

Proportional views

Progress on the Research of Nuclear Single Particle Resonant States

doi: 10.11804/NuclPhysRev.35.04.401
Funds:  National Natural Science Foundation of China (11575002, 11575001, 11205004, 11875070, 11805004, 11505001)

Abstract: Resonance is an interesting phenomenon in nature. In nuclear physics, resonance plays an important role in the formation of many exotic phenomena. This paper introduces the recently developed RMF-CSM, RMFCGF, and RMF-CMR methods and their researches on nuclear single-particle resonances. The energies and widths of the single-particle resonant states in 120Sn and 31Ne and their evolution to mass number and deformation are given. In addition, the physical mechanism of the halo formation in 19C, 31Ne and 39Mg and the cause of energy level inversion near N=20 are analyzed. In particular, the newly developed RMF-CMR approach has been successful in describing stable and exotic nuclei and supports the prediction that Zr isotopes exist in a giant halo.

GUO Jianyou, LIU Quan, NIU Zhongming, HENG Taihua, WANG Zhangyin, SHI Min, CAO Xueneng. Progress on the Research of Nuclear Single Particle Resonant States[J]. Nuclear Physics Review, 2018, 35(4): 401-408. doi: 10.11804/NuclPhysRev.35.04.401
Citation: GUO Jianyou, LIU Quan, NIU Zhongming, HENG Taihua, WANG Zhangyin, SHI Min, CAO Xueneng. Progress on the Research of Nuclear Single Particle Resonant States[J]. Nuclear Physics Review, 2018, 35(4): 401-408. doi: 10.11804/NuclPhysRev.35.04.401
Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return