Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

A. Jalili Majarshin, H. Sabri, PAN Feng. Quantum Phase Transition in an Extension of the Interacting Boson Model Based on Dual Algebraic Structure[J]. Nuclear Physics Review, 2018, 35(4): 482-486. doi: 10.11804/NuclPhysRev.35.04.482
Citation: A. Jalili Majarshin, H. Sabri, PAN Feng. Quantum Phase Transition in an Extension of the Interacting Boson Model Based on Dual Algebraic Structure[J]. Nuclear Physics Review, 2018, 35(4): 482-486. doi: 10.11804/NuclPhysRev.35.04.482

Quantum Phase Transition in an Extension of the Interacting Boson Model Based on Dual Algebraic Structure

doi: 10.11804/NuclPhysRev.35.04.482
Funds:  National Natural Science Foundation of China (11675071, 11747318); China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971); LSU-LNNU Joint Research
  • Received Date: 2018-09-23
  • Rev Recd Date: 2018-11-02
  • Publish Date: 2020-05-03
  • An extension of the original interacting boson model to the multi-level case including negative parity f-and p-bosons is made. An affinealgebraic approach is applied to solve the multi-level pairing problem numerically via the dual algebraic structure. The duality relation is explicitly used to construct the number-conserving unitary and number-nonconserving quasi-spin algebra, related with the Hamiltonian and the corresponding bases. After fitting to the experimental level energies of even-even 106-116Cd, several order parameters to signify the shape (phase) transition, such as occupation numbers of the bosons in the ground and a few lowest excited states, the level energy staggering in the (quasi)-γ band, are calculated to demonstrate the shape (phase) transitional behavior of these medium mass transitional nuclei.
  • [1] BUCURESCU D, ZAMFIR N V. Phys Rev C, 2018, 98:024301.
    [2] PAN F, LI D, CHENG G, et al. Phys Rev C, 2018, 97:034316.
    [3] PAN F, YUAN S, QIAO Z, et al. Phys Rev C, 2018, 97:034326.
    [4] ZHANG Y, PAN F, LIU Y X, et al. Phys Rev C, 2017, 96:034323.
    [5] PAVEL C, PAVEL S. Phys Scr, 2016, 91:083006.
    [6] MARJARSHIN A J, JAFARIZADEH M A, SABRI H. et al. Eur Phys J Plus, 2017, 132:418.
    [7] GREINER W, MARUHN J A. Nuclear Models[M]. Berlin:Springer, 1996.
    [8] IACHELLO F AND ARIMA A. The Interacting Boson Model[M].Cambridge:Cambridge University Press, 1987.
    [9] HEYDE K. in Algebraic Approaches to Nuclear Structure[M]. Swizerland:Hardwood Academic Publishers, 1993.
    [10] CAPRIO M, SKRABACZ J, IACHELLO F. J Phys A:Math Theor, 2011, 44:075303.
    [11] CEJNAR P, STRANSKY P, KLOC M. Phys Scr, 2015, 90:114015.
    [12] JAFARIZADEH M A, MARJARSHIN A J, FOULADI N. Int J Mod Phys E, 2016, 25:1650089.
    [13] VON BRENTANO P, ZAMFIR N, ZILGES A. Phys Lett B, 1992, 278:221.
    [14] JUNGCLAUS A, BORNER H G, JOLIE J, et al. Phys Rev C, 1983, 47:1020.
    [15] S. LERMA H., ERREA B, DUKELSKY J, et al. Phys Rev C, 2006, 74:024314.
    [16] SPIEKER M, BUCURESCU D, ENDRES J, et al. Phys Rev C, 2013, 88:041303.
    [17] MARJARSHIN A J, JAFARIZADEH M A. Nucl Phys A, 2017, 968:287.
    [18] ZAMFIR N V, KUSNEZOV D. Phys Rev C, 2001, 63:054306.
    [19] KUYUCAK S, HONMA M. Phys Rev C, 2002, 65:064323.
    [20] LONG G L, SHEN T Y, JI H Y, et al. Phys Rev C, 1998, 57:2301.
    [21] JAFARIZADEH M A, MARJARSHIN A J, FOULADI N, et al. J Phys G:Nucl Part Phys, 2016, 43:095108.
    [22] SPIEKER M, PASCU S, ZILGES A, et al. Phys Rev Lett, 2015, 114:192504.
    [23] GARRETT P, LEHMANN H, JOLIE J, et al. Phys Rev C, 1999, 59:2455.
    [24] PASCU S, ENDRES J, ZAMFIR N V, et al. Phys Rev C, 2012, 85:064315.
    [25] PAN F, DRAAYER J P. Nucl Phys A, 1998, 636:156.
    [26] PAN F, ZHANG X, DRAAYER J P. J Phys A:Math Gen, 2002, 35:7173.
    [27] KUSNEZOV D. J Phys A:Math Gen, 1990, 23:5673.
    [28] UI H. Ann Phys, 1968, 49:69.
    [29] DAI L, PAN F, DRAAYER J P. Nucl Phys A, 2017, 957:51.
    [30] PAN F, ZHOU D, DAI L R, et al. Phys Rev C, 2017, 95:034308.
    [31] MARJARSHIN A J, SABRI H. Nucl Phys A, 2017, 964:69.
    [32] MARJARSHIN A J. Eur Phys J A, 2018, 54:11.
    [33] RACAH G. Phys Rev, 1942, 62:438.
    [34] TROLTENIER D, MARUHNW J A, GREINER W, et al. Z Phys A, 1991, 338:261.
    [35] BHARTI A, DEVI R, KHOSA S K. J Phys G:Nucl Part Phys, 1994, 20:1231.
    [36] SINGH A J, RAINA E K. Phys Rev C, 1995, 53:1258.
    [37] BHARTI A, KHOSA S K. Phys Rev C, 1996, 53:2528.
    [38] GIANNATIEMPO A, NANNINI A, SONA P, et al. Phys Rev C, 1995, 52:2969.
    [39] DE FRENNE D, NEGRET A. Nucl Data Sheets, 2008, 109:943.
    [40] BLACHOT J. Nucl Data Sheets, 2000, 91:135.
    [41] DE FRENNE D, JACOBS E. Nucl Data Sheets, 2000, 89:481.
    [42] DE FRENNE D, JACOBS E. Nucl Data Sheets, 1996, 79:639.
    [43] BLACHOT J. Nucl Data Sheets, 2012, 113:515.
    [44] BLACHOT J. Nucl Data Sheets, 2010, 111:717.
    [45] MCCUCHAN E, BONATSOS D, ZAMFIR N V, et al. Phys Rev C, 2007, 76:024306.
    [46] CHABAB M, LAHBAS A, OULNE M. Eur Phys J A, 2015, 51:1.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1020) PDF downloads(81) Cited by()

Proportional views

Quantum Phase Transition in an Extension of the Interacting Boson Model Based on Dual Algebraic Structure

doi: 10.11804/NuclPhysRev.35.04.482
Funds:  National Natural Science Foundation of China (11675071, 11747318); China-U. S. Theory Institute for Physics with Exotic Nuclei (CUSTIPEN) (DE-SC0009971); LSU-LNNU Joint Research

Abstract: An extension of the original interacting boson model to the multi-level case including negative parity f-and p-bosons is made. An affinealgebraic approach is applied to solve the multi-level pairing problem numerically via the dual algebraic structure. The duality relation is explicitly used to construct the number-conserving unitary and number-nonconserving quasi-spin algebra, related with the Hamiltonian and the corresponding bases. After fitting to the experimental level energies of even-even 106-116Cd, several order parameters to signify the shape (phase) transition, such as occupation numbers of the bosons in the ground and a few lowest excited states, the level energy staggering in the (quasi)-γ band, are calculated to demonstrate the shape (phase) transitional behavior of these medium mass transitional nuclei.

A. Jalili Majarshin, H. Sabri, PAN Feng. Quantum Phase Transition in an Extension of the Interacting Boson Model Based on Dual Algebraic Structure[J]. Nuclear Physics Review, 2018, 35(4): 482-486. doi: 10.11804/NuclPhysRev.35.04.482
Citation: A. Jalili Majarshin, H. Sabri, PAN Feng. Quantum Phase Transition in an Extension of the Interacting Boson Model Based on Dual Algebraic Structure[J]. Nuclear Physics Review, 2018, 35(4): 482-486. doi: 10.11804/NuclPhysRev.35.04.482
Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return