Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

K. Nomura. Beyond-mean-field Boson-fermion Description of Odd-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 499-504. doi: 10.11804/NuclPhysRev.35.04.499
Citation: K. Nomura. Beyond-mean-field Boson-fermion Description of Odd-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 499-504. doi: 10.11804/NuclPhysRev.35.04.499

Beyond-mean-field Boson-fermion Description of Odd-mass Nuclei

doi: 10.11804/NuclPhysRev.35.04.499
Funds:  QuantiXLie Centre of Excellence(KK.01.1.1.01.0004)
  • Received Date: 2018-10-11
  • Publish Date: 2020-05-03
  • A recently developed method for calculating spectroscopic properties of medium-mass and heavy atomic nuclei with an odd number of nucleons is reviewed, that is based on the framework of nuclear energy density functional theory and the particle-core coupling scheme. The deformation energy surface of the eveneven core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s), are obtained by a self-consistent mean-field calculation with the choice of the energy density functional and pairing properties. These quantities are then used as a microscopic input to build the interacting bosonfermion Hamiltonian. Only three strength parameters for the particle-core coupling are specifically adjusted to selected data for the low-lying states of a particular odd-mass nucleus. The method is illustrated in a systematic study of low-energy excitation spectra and electromagnetic transition rates of axially-deformed odd-mass Eu isotopes. Recent applications of the method, to the calculations of the signatures of shapes phase transitions in axially-deformed odd-mass nuclei, octupole correlations in neutron-rich odd-mass Ba isotopes, are discussed.
  • [1] BOHR A, MOTTELSON B M. Nuclear Structure, Vol. 2[M]. New York:Benjamin, 1975.
    [2] RING P, SCHUCK P. The Nuclear Many-Body Problem[M]. Berlin:Springer-Verlag, 1980.
    [3] IACHELLO F, ARIMA A. The Interacting Boson Model[M]. Cambridge:Cambridge University Press, 1987.
    [4] BENDER M, HEENEN PH, REINHARD P G. Rev Mod Phys, 2003, 75:121.
    [5] CAURIER E, MARTÍNEZ-PINEDO G, NOWACKI F, et al. Rev Mod Phys, 2005. 77:427.
    [6] BOHR A, Mat Fys Medd Dan Vid Selsk, 1953, 27:16.
    [7] VRETENAR D, AFANASJEV A V, LALAZISSIS G,et al. Phys Rep, 2005, 409:101.
    [8] BALLY B, AVEZ B, BENDER M, et al. Phys Rev Lett, 2014, 113:162501.
    [9] BORRAJO M, EGIDO J L. Eur Phys J A, 2016, 52:277.
    [10] NOMURA K, NIKŠIĆ T, VRETENAR D. Phys Rev C, 2016, 93:054305.
    [11] IACHELLO F, VAN ISACKER P. The Interacting BosonFermion Model[M]. Cambridge:Cambridge University Press, 1991.
    [12] K. NOMURA, T. NIKŠIĆ, D. VRETENAR. Phys Rev C, 2016, 94:064310.
    [13] NOMURA K, RODRÍGUEZ-GUZMÁN R, ROBLEDO L M. Phys Rev C, 2017, 96:014314.
    [14] NOMURA K, NIKŠIĆ T, VRETENAR D. Phys Rev C, 2017, 96:014304.
    [15] NOMURA K, RODRÍGUEZ-GUZMÁN R, ROBLEDO L M. Phys Rev C, 2017, 96:064316.
    [16] NOMURA K, NIKŠIĆ T, VRETENAR D. Phys Rev C, 2018, 97:024317.
    [17] NOMURA K, RODRÍGUEZ-GUZMÁN R, ROBLEDO L M. Phys Rev C, 2018, 97:064313.
    [18] NOMURA K, RODRÍGUEZ-GUZMÁN R, ROBLEDO L M. Phys Rev C, 2018, 97:064314.
    [19] OTSUKA T, ARIMA A, IACHELLO F. Nucl Phys A, 1978, 309:1.
    [20] SCHOLTEN O, BLASI N. Nucl Phys A, 1982, 380:509.
    [21] SCHOLTEN O. Prog Part Nucl Phys, 1985, 14:189.
    [22] NOMURA K, SHIMIZU N, OTSUKA T. Phys Rev Lett, 2008, 101:142501.
    [23] GINOCCHIO J N, KIRSON M W. Nucl Phys A, 1980, 350:31.
    [24] NOMURA K, OTSUKA T, SHIMIZU N, Guo L. Phys Rev C, 2011, 83:041302.
    [25] NIKŠIĆ T, VRETENAR D, RING P. Phys Rev C, 2008, 78:034318.
    [26] TIAN Y, MA Z Y, RING P. Phys Lett B, 2009, 676:44.
    [27] Brookhaven National Nuclear Data Center, http://www.nndc.bnl.gov.
    [28] CEJNAR P, JOLIE J, CASTEN R F. Rev Mod Phys, 2010, 82:2155.
    [29] PETRELLIS D, LEVIATAN A, IACHELLO F. Ann Phys (NY), 2011, 326:926.
    [30] BUTLER P A, J Phys G, 2016, 43:073002.
    [31] RZACA-URBAN T, URBAN W, PINSTON J A, et al. Phys Rev C, 2012, 86:044324.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1004) PDF downloads(68) Cited by()

Proportional views

Beyond-mean-field Boson-fermion Description of Odd-mass Nuclei

doi: 10.11804/NuclPhysRev.35.04.499
Funds:  QuantiXLie Centre of Excellence(KK.01.1.1.01.0004)

Abstract: A recently developed method for calculating spectroscopic properties of medium-mass and heavy atomic nuclei with an odd number of nucleons is reviewed, that is based on the framework of nuclear energy density functional theory and the particle-core coupling scheme. The deformation energy surface of the eveneven core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s), are obtained by a self-consistent mean-field calculation with the choice of the energy density functional and pairing properties. These quantities are then used as a microscopic input to build the interacting bosonfermion Hamiltonian. Only three strength parameters for the particle-core coupling are specifically adjusted to selected data for the low-lying states of a particular odd-mass nucleus. The method is illustrated in a systematic study of low-energy excitation spectra and electromagnetic transition rates of axially-deformed odd-mass Eu isotopes. Recent applications of the method, to the calculations of the signatures of shapes phase transitions in axially-deformed odd-mass nuclei, octupole correlations in neutron-rich odd-mass Ba isotopes, are discussed.

K. Nomura. Beyond-mean-field Boson-fermion Description of Odd-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 499-504. doi: 10.11804/NuclPhysRev.35.04.499
Citation: K. Nomura. Beyond-mean-field Boson-fermion Description of Odd-mass Nuclei[J]. Nuclear Physics Review, 2018, 35(4): 499-504. doi: 10.11804/NuclPhysRev.35.04.499
Reference (31)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return