Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

LIU Zixin, XIA Chengjun, SUN Tingting. Relativistic Mean-field Approach for ∧, Ξ and ∑ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 523-530. doi: 10.11804/NuclPhysRev.35.04.523
Citation: LIU Zixin, XIA Chengjun, SUN Tingting. Relativistic Mean-field Approach for ∧, Ξ and ∑ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 523-530. doi: 10.11804/NuclPhysRev.35.04.523

Relativistic Mean-field Approach for ∧, Ξ and ∑ Hypernuclei

doi: 10.11804/NuclPhysRev.35.04.523
Funds:  National Natural Science Foundation of China (11505157, 11705163); Physics Research and Development Program of Zhengzhou University (32410017)
  • Received Date: 2018-09-23
  • Rev Recd Date: 2018-11-03
  • Publish Date: 2020-05-03
  • Single ∧, Ξ, and ∑ hypernuclei are systematically studied within the framework of relativistic mean-field (RMF) model with YN interactions being constrained according to the experimental data and previous theoretical efforts. By adding a hyperon to 16O, the mean-field potentials and single-particle levels for hyperons (∧, Ξ0,-, and ∑+,0,-) are compared and the impurity effects on the nuclear core are examined. In general, the ∧ and ∑0 hyperons show similar behaviors in bulk properties since both of them are electroneutral and with similar coupling constants; Ξ0 hyperon owns the shallowest mean-field potential well; and Coulomb interactions play vital roles in the charged Ξ-, ∑-, and ∑+ hyperons. As an impurity, the intruded single-hyperon makes the nuclear system more bound in most cases due to the attractive NY interaction. However, very different effects on the nucleon radii are observed for different hyperons. Besides, the effects of the ωYY tensor couplings on the spin-orbit splitting are discussed, and remarkable influences are found which even change the level ordering of Ξ hyperon.
  • [1] DANYSZ M, PNIEWSKI J. Philos Mag, 1953, 44:348.
    [2] HASHIMOTO O, TAMURA H. Prog Part Nucl Phys, 2006, 57:564.
    [3] GAL A, HUNGERFORD E V, MILLENER D J. Rev Mod Phys, 2016, 88:035004.
    [4] NAGAE T. Prog Theor Phys Suppl, 2010, 185:299.
    [5] HAO J, KUO T T S, REUBER A, et al. Phys Rev Lett, 1993, 71:1498.
    [6] HIYAMA E, MOTOBA T, RIJKEN T A, et al. Prog Theor Phys Suppl, 2010, 185:1.
    [7] SCHAFFNER-BIELICH J. Nucl Phys A, 2008, 804:309.
    [8] XING X Y, HU J N, SHEN H. Phys Rev C, 2017, 95:054310.
    [9] SUN T T, XIA C J, ZHANG S S, et al. Chin Phys C, 2018, 42:025101.
    [10] HAYANO R S, ISHIKAWA T, IWASAKI M, et al. Phys Lett B, 1989, 231:355.
    [11] PROWSE D J. Phys Rev Lett, 1966, 17:782.
    [12] DANYSZ M, GARBOWSKA K, PNIEWSKI J, et al. Nucl Phys, 1963, 49:121.
    [13] AOKI S, BAHK S Y, CHUNG K S, et al. Prog Theor Phys, 1991, 85:1287.
    [14] KHAUSTOV P, ALBURGER D E, BARNES P D, et al. Phys Rev C, 2000, 61:054603.
    [15] AOKI S, BAHK S Y, CHUNG K S, et al. Prog Theor Phys, 1993, 89:493.
    [16] NAKAZAWA K, ENDO Y, FUKUNAGA S, et al. Prog Theor Exp Phys, 2015, 2015:033D02.
    [17] MOTOBA T, BANDŌ H, IKEDA K. Prog Theor Phys, 1983, 70:189.
    [18] HIYAMA E, KAMIMURA M, YAMAMOTO Y, et al. Phys Rev Lett, 2010, 104:212502.
    [19] ZHOU X R, SCHULZE H J, SAGAWA H, et al. Phys Rev C, 2007, 76:034312.
    [20] LU B N, ZHAO E G, ZHOU S G. Phys Rev C, 2011, 84:014328.
    [21] HIYAMA E, KAMIMURA M, MOTOBA T, et al. Phys Rev C, 1996, 53:2075.
    [22] ZHOU X R, POLLS A, SCHULZE H J, et al. Phys Rev C, 2008, 78:054306.
    [23] LÜ H F, MENG J. Chin Phys Lett, 2002, 19:1775.
    [24] SONG C Y, YAO J M. Chin Phys C, 2010, 34:1425.
    [25] LU W L, LIU Z X, REN S H, et al. J Phys G:Nucl Part Phys, 2017, 44:125104.
    [26] REN S H, SUN T T, ZHANG W. Phys Rev C, 2017, 95:054318.
    [27] SUN T T, LU W L, ZHANG S S. Phys Rev C, 2017, 96:044312.
    [28] BANDŌ H, MOTOBA T, ŽOFKA J. Int J Mod Phys A, 1990, 05:4021.
    [29] GAL A, SOPER J M, DALITZ R H. Ann Phys (N.Y.), 1971, 63:53.
    [30] MILLENER D J. Nucl Phys A, 2008, 804:84.
    [31] ISAKA M, KIMURA M, DOTE A. Phys Rev C, 2011, 83:044323.
    [32] BROCKMANN R, WEISE W. Phys Lett B, 1977, 69:167.
    [33] MAREŠ J, JENNINGS B K. Phys Rev C, 1994, 49:2472.
    [34] SHEN H, YANG F, TOKI H. Prog Theor Phys, 2006, 115:325.
    [35] LIU Z X, XIA C J, LU W L, et al. Phys Rev C, 2018, 98:024316.
    [36] WIRTH R, GAZDA D, NAVRATIL P, ét al. Phys Rev Lett, 2014, 113:192502.
    [37] SERT B D, WALECKA J D. Adv Nucl Phys, 1986, 16:1.
    [38] MENG J, ZHOU S G. J Phys G:Nucl Part Phys, 2015, 42:093101.
    [39] SUN T T. Sci Sin Phys Mech Astron, 2016, 42:012006. (in Chinese)
    [40] BRÜCKNER W, FAESSLER M A, KETEL T J, et al. Phys Lett B, 1978, 79:157.
    [41] LONG W H, MENG J, VAN GIAI N, et al. Phys Rev C, 2004, 69:034319.
    [42] SUN T T, HIYAMA E, SAGAWA H, et al. Phys Rev C, 2016, 94:064319.
    [43] FORTIN M, AVANCINI S S, PROVIDÊNCIA C, et al. Phys Rev C, 2017, 95:065803.
    [44] NAGAE T, MIYACHI T, FUKUDA T, et al. Phys Rev Lett, 1998, 80:1605.
    [45] DOVER C B, GAL A. Prog Part Nucl Phys, 1984, 12:171.
    [46] NAGELS M M, RIJKEN T A, DE SWART J J. Phys Rev D, 1975, 12:744.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1552) PDF downloads(76) Cited by()

Proportional views

Relativistic Mean-field Approach for ∧, Ξ and ∑ Hypernuclei

doi: 10.11804/NuclPhysRev.35.04.523
Funds:  National Natural Science Foundation of China (11505157, 11705163); Physics Research and Development Program of Zhengzhou University (32410017)

Abstract: Single ∧, Ξ, and ∑ hypernuclei are systematically studied within the framework of relativistic mean-field (RMF) model with YN interactions being constrained according to the experimental data and previous theoretical efforts. By adding a hyperon to 16O, the mean-field potentials and single-particle levels for hyperons (∧, Ξ0,-, and ∑+,0,-) are compared and the impurity effects on the nuclear core are examined. In general, the ∧ and ∑0 hyperons show similar behaviors in bulk properties since both of them are electroneutral and with similar coupling constants; Ξ0 hyperon owns the shallowest mean-field potential well; and Coulomb interactions play vital roles in the charged Ξ-, ∑-, and ∑+ hyperons. As an impurity, the intruded single-hyperon makes the nuclear system more bound in most cases due to the attractive NY interaction. However, very different effects on the nucleon radii are observed for different hyperons. Besides, the effects of the ωYY tensor couplings on the spin-orbit splitting are discussed, and remarkable influences are found which even change the level ordering of Ξ hyperon.

LIU Zixin, XIA Chengjun, SUN Tingting. Relativistic Mean-field Approach for ∧, Ξ and ∑ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 523-530. doi: 10.11804/NuclPhysRev.35.04.523
Citation: LIU Zixin, XIA Chengjun, SUN Tingting. Relativistic Mean-field Approach for ∧, Ξ and ∑ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 523-530. doi: 10.11804/NuclPhysRev.35.04.523
Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return