Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

LIU Zhiwei, QIAN Zhuang, SUN Baoyuan. Physics of Fock Terms on Fourth-order Symmetry Energy of Nuclear Matter[J]. Nuclear Physics Review, 2018, 35(4): 549-554. doi: 10.11804/NuclPhysRev.35.04.549
Citation: LIU Zhiwei, QIAN Zhuang, SUN Baoyuan. Physics of Fock Terms on Fourth-order Symmetry Energy of Nuclear Matter[J]. Nuclear Physics Review, 2018, 35(4): 549-554. doi: 10.11804/NuclPhysRev.35.04.549

Physics of Fock Terms on Fourth-order Symmetry Energy of Nuclear Matter

doi: 10.11804/NuclPhysRev.35.04.549
Funds:  National Natural Science Foundation of China(11875152)
  • Received Date: 2018-09-15
  • Rev Recd Date: 2018-12-12
  • Publish Date: 2020-05-03
  • The density dependence of nuclear fourth-order symmetry energy S4 is studied within the covariant density functional (CDF) theory in terms of the kinetic energy, isospin-singlet, and isospin-triplet potential energy parts of the energy density functional. When the Fock diagram is introduced, it is found that both isospin-singlet and isospin-triplet components of the potential energy plays important roles in determining the fourth-order symmetry energy. Especially, an extra suppression, which comes from the Fock terms via isoscalar meson-nucleon coupling channels, is revealed in the isospin-triplet potential part of the fourth-order symmetry energy. As an useful attempt, the generalized symmetry energy is introduced to describe the various orders of nuclear symmetry energies in a visual and self-consistent way.
  • [1] LATTIMER J M, PRAKASH M. Phys Rep, 2000, 333:121.
    [2] LI B A, CHEN L W, KO C M. Phys Rep, 2008, 464:113.
    [3] CHEN L W, KO C M, LI B A. Phys Rev C, 2005, 72:064309.
    [4] OERTEL M, HEMPEL M, KLÄHN T, et al. Rev Mod Phys, 2017, 89:015007.
    [5] ZHANG F S, CHEN L W. Chin Phys Lett, 2001, 18:142.
    [6] STEINER A W. Phys Rev C, 2006, 74:045808.
    [7] XU J, CHEN L W, LI B A, et al. Phys Rev C, 2009, 79:035802.
    [8] XU J, CHEN L W, LI B A, et al. Astrophys J, 2009, 697:1549.
    [9] CAI B J, CHEN L W. Phys Rev C, 2012, 85:024302.
    [10] SEIF W M, BASU D N. Phys Rev C, 2014, 89:028801.
    [11] KAISER N. Phys Rev C, 2015, 91:065201.
    [12] WANG R, CHEN L W. Phys Lett B, 2017, 773:62.
    [13] PU J, ZHANG Z, CHEN L W. Phys Rev C, 2017, 96:054311.
    [14] GONZALEZ-BOQUERA C, CENTELLES M, VIÑAS X, et al. Phys Rev C, 2017, 96:065806.
    [15] LIU Z W, QIAN Z, XING R Y, et al. Phys Rev C, 2018, 97:025801.
    [16] CHEN L W, CAI B J, KO C M, et al. Phys Rev C, 2009, 80:014322.
    [17] WELLENHOFER C, HOLT J W, KAISER N. Phys Rev C, 2016, 93:055802.
    [18] NANDI R, SCHRAMM S. Phys Rev C, 2016, 94:025806.
    [19] XU C, REN Z Z. Chin Phys Lett, 2012, 29:122102.
    [20] HEN O, LI B A, GUO W J, et al. Phys Rev C, 2015, 91:025803.
    [21] CAI B J, LI B A. Phys Rev C, 2016, 93:014619.
    [22] ZHAO Q, SUN B Y, LONG W H. J Phys G:Nucl Part Phys,2015, 42:095101.
    [23] CAI B J, LI B A. Phys Rev C, 2015, 92:011601.
    [24] RING P. Prog Part Nucl Phys, 1996, 37:193.
    [25] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl Phys, 2006, 57:470.
    [26] ZHOU S G, MENG J, RING P. Phys Rev Lett, 2003, 91:262501.
    [27] LONG W H, VAN GIAI N, MENG J. Phys Lett B, 2006, 640:150.
    [28] LONG W H, RING P, VAN GIAI N, et al. Phys Rev C, 2010, 81:024308.
    [29] LONG W H, SAGAWA H, MENG J, et al. Phys Lett B, 2006, 639:242.
    [30] LI J J, LONG W H, SONG J L, et al. Phys Rev C, 2016, 93:054312.
    [31] LIANG H Z, VAN GIAI N, MENG J. Phys Rev Lett, 2008, 101:122502.
    [32] LONG W H, SUN B Y, HAGINO K, et al. Phys Rev C, 2012, 85:025806.
    [33] SUN B Y, LONG W H, MENG J, et al. Phys Rev C, 2008, 78:065805.
    [34] JIANG L J, YANG S, DONG J M, et al. Phys Rev C, 2015, 91:025802.
    [35] JIANG L J, YANG S, SUN B Y, et al. Phys Rev C, 2015, 91:034326.
    [36] ZONG Y Y, SUN B Y. Chin Phys C, 2018, 42:024101.
    [37] DONG J M, ZHANG Y H, ZUO W, et al. Phys Rev C, 2018, 97:021301.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1435) PDF downloads(86) Cited by()

Proportional views

Physics of Fock Terms on Fourth-order Symmetry Energy of Nuclear Matter

doi: 10.11804/NuclPhysRev.35.04.549
Funds:  National Natural Science Foundation of China(11875152)

Abstract: The density dependence of nuclear fourth-order symmetry energy S4 is studied within the covariant density functional (CDF) theory in terms of the kinetic energy, isospin-singlet, and isospin-triplet potential energy parts of the energy density functional. When the Fock diagram is introduced, it is found that both isospin-singlet and isospin-triplet components of the potential energy plays important roles in determining the fourth-order symmetry energy. Especially, an extra suppression, which comes from the Fock terms via isoscalar meson-nucleon coupling channels, is revealed in the isospin-triplet potential part of the fourth-order symmetry energy. As an useful attempt, the generalized symmetry energy is introduced to describe the various orders of nuclear symmetry energies in a visual and self-consistent way.

LIU Zhiwei, QIAN Zhuang, SUN Baoyuan. Physics of Fock Terms on Fourth-order Symmetry Energy of Nuclear Matter[J]. Nuclear Physics Review, 2018, 35(4): 549-554. doi: 10.11804/NuclPhysRev.35.04.549
Citation: LIU Zhiwei, QIAN Zhuang, SUN Baoyuan. Physics of Fock Terms on Fourth-order Symmetry Energy of Nuclear Matter[J]. Nuclear Physics Review, 2018, 35(4): 549-554. doi: 10.11804/NuclPhysRev.35.04.549
Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return