Advanced Search
Volume 36 Issue 2
Jul.  2019
Turn off MathJax
Article Contents

ZHANG Shixu, LIU Huiwei, HE Yiwen, ZHANG Meiling, LI Gongping. Molecular Dynamics Simulation Study on the Film Formation by Low Energy Cu13 Clusters Deposition[J]. Nuclear Physics Review, 2019, 36(2): 235-241. doi: 10.11804/NuclPhysRev.36.02.235
Citation: ZHANG Shixu, LIU Huiwei, HE Yiwen, ZHANG Meiling, LI Gongping. Molecular Dynamics Simulation Study on the Film Formation by Low Energy Cu13 Clusters Deposition[J]. Nuclear Physics Review, 2019, 36(2): 235-241. doi: 10.11804/NuclPhysRev.36.02.235

Molecular Dynamics Simulation Study on the Film Formation by Low Energy Cu13 Clusters Deposition

doi: 10.11804/NuclPhysRev.36.02.235
Funds:  National Natural Science Foundation of China (11604129); Fundamental Research Funds for Central Universities (lzujbky-2015-67, lzujbky-2019-56)
  • Received Date: 2018-09-15
  • Rev Recd Date: 2019-01-24
  • Publish Date: 2019-06-20
  • The formation of Cu film on Fe (001) surface by depositing Cu13 clusters was investigated via the molecular dynamics simulation. The incident energy range of Cu13 clusters was from 0.1 to 10.0 eV/atom, and the deposition rate was 1 clusters/ps. The temperature of substrate was 300, 700 and 1 000 K, respectively. The effects of incident energy of cluster and substrate temperature on the growth mode, surface roughness, defects distribution and epitaxy degree of film were studied. The simulation results show that the incident energy of Cu13 clusters plays a dominant role in the growth mode of film. In addition, when the incident energy of Cu13 clusters is 7.5 eV/atom and the substrate temperature is 300 K, the Cu film formed on Fe(001) surface is smoother, few defects and better epitaxy degree.
  • [1] ROBBENNOLT S, QUINTANA A, PELLICER E, et al. Nanoscale, 2018, 10(30):14570.
    [2] MODAK R, SRINIVASU V V, SRINIVASAN A. Magnetism and Magnetic Materials, 2018, 464:50.
    [3] KREUZPAINTNER W, WIEDEMANN B, STAHN J, et al. Physical Review Applied, 2017, 7(5):054004.
    [4] ZHOU L, MA L, LIU T, et al. Superconductivity and Novel Magnetism, 2016, 29(5):1325.
    [5] TOPKAYA R. Superconductivity and Novel Magnetism, 2016, 30(5):1275.
    [6] MORADIAN R, GHADERI A, ELAHI S M. Materials Science:Materials in Electronics, 2016, 27(8):7987.
    [7] DESAUTELS R D, SHUEH C, LIN K W, et al. Applied Physics Letters, 2016, 108(17):172410.
    [8] TǍLU S, STACH S, SOLAYMANI S, et al. Electroanalytical Chemistry, 2015, 749:31.
    [9] STACH S, GARCZYK Z, TALU S, et al. Physical Chemistry C, 2015, 119(31):17887.
    [10] GAO F, PENG X, HUANG C, et al. AIP Advances, 2018, 8(4):045208.
    [11] ZHANG X, HICKEL T, ROGAL J, et al. Physical Review Letters, 2017, 118(23):236101.
    [12] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford:Clarendon Press, 1987.
    [13] MULLER K H. Applied Physics, 1987, 61(7):2516.
    [14] HWANG C C, CHANG J G, HUANG G J, et al. Applied Physics, 2002, 92(10):5904.
    [15] ZAMINPAYMA E, NAYEBI P, MIRABBASZADEH K. Cluster Science, 2008, 19(4):623.
    [16] CHEN C K, CHANG S C, CHEN C L. Applied Physics, 2017, 107(12):124309.
    [17] HONG Z H, FANG T H, LIN S J, et al. Computational Materials Science, 2010, 49(4):850.
    [18] HONG Z H, HWANG S F, FANG T H. Surface Science, 2011, 605(s1-2):46.
    [19] HWANG S F, LI Y H, HONG Z H. Computational Materials Science, 2012, 56:85.
    [20] CHENG Y T, LIANG T, NIE X W, et al. Surface Science, 2014, 621:109.
    [21] ZHU G, SUN J, ZHANG L, et al. Crystal Growth, 2018, 492:60.
    [22] CHEN X Z, ZHANG S X, LI G P. Atomic and Molecular Physics, 2017, 34(5):865. (in Chinese) (陈炫芝, 张世旭, 李公平. 原子与分子物理学报, 2017, 34(5):865.)
    [23] ZHANG S X, GONG H F, CHEN X Z, et al. Applied Surface Science, 2014, 314:433.
    [24] ZHANG S X, GONG H F, GAO N, et al. Computational Materials Science, 2014, 85:230.
    [25] ZHANG S X, LI G P, GONG H F, et al. 2015, 97(1):165.
    [26] NOSE S. Chemical Physics, 1984, 81(1):511.
    [27] ZHANG M L, LI G P. Solid State Phenomena, 2007, 121-123:607.
    [28] ACKLAND G J, BACON D J, CALDER A F, et al. Philosophical Magazine A, 1997, 75(3):713.
    [29] SWOPE W C, ANDERSEN H C, BERENS P H, et al. Chemical Physics, 1982, 76:637.
    [30] ANDERSEN H C. J Comput Phys, 1983, 52:24.
    [31] HAILE J M, JOHNSTON I, MALLINCKRODT A J, et al. Computers in Physics, 1993, 7:625.
    [32] VOLMER M, WEBER A. Zeitschrift für Physikalische Chemie, 1925, 119:277.
    [33] FRANK F C, VAN D M J H. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1949, 198(1053):205.
    [34] PIMPINELLI A, VILLAIN J. Materials Research Bulletin, 1998, 1(3):400.
    [35] ZHANG Shixu. Molecular Dynamics Simulation of Cu Clusters Deposition on a Fe(001) Surface[D]. Lanzhou:Lanzhou University, 2014. (in Chinese) (张世旭. Cu团簇沉积到Fe(001)表面的分子动力学模拟[D]. 兰州:兰州大学, 2014.)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1494) PDF downloads(58) Cited by()

Proportional views

Molecular Dynamics Simulation Study on the Film Formation by Low Energy Cu13 Clusters Deposition

doi: 10.11804/NuclPhysRev.36.02.235
Funds:  National Natural Science Foundation of China (11604129); Fundamental Research Funds for Central Universities (lzujbky-2015-67, lzujbky-2019-56)

Abstract: The formation of Cu film on Fe (001) surface by depositing Cu13 clusters was investigated via the molecular dynamics simulation. The incident energy range of Cu13 clusters was from 0.1 to 10.0 eV/atom, and the deposition rate was 1 clusters/ps. The temperature of substrate was 300, 700 and 1 000 K, respectively. The effects of incident energy of cluster and substrate temperature on the growth mode, surface roughness, defects distribution and epitaxy degree of film were studied. The simulation results show that the incident energy of Cu13 clusters plays a dominant role in the growth mode of film. In addition, when the incident energy of Cu13 clusters is 7.5 eV/atom and the substrate temperature is 300 K, the Cu film formed on Fe(001) surface is smoother, few defects and better epitaxy degree.

ZHANG Shixu, LIU Huiwei, HE Yiwen, ZHANG Meiling, LI Gongping. Molecular Dynamics Simulation Study on the Film Formation by Low Energy Cu13 Clusters Deposition[J]. Nuclear Physics Review, 2019, 36(2): 235-241. doi: 10.11804/NuclPhysRev.36.02.235
Citation: ZHANG Shixu, LIU Huiwei, HE Yiwen, ZHANG Meiling, LI Gongping. Molecular Dynamics Simulation Study on the Film Formation by Low Energy Cu13 Clusters Deposition[J]. Nuclear Physics Review, 2019, 36(2): 235-241. doi: 10.11804/NuclPhysRev.36.02.235
Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return