Advanced Search
Volume 36 Issue 2
Jul.  2019
Turn off MathJax
Article Contents

LIU Huan, LIU Chenguang, YANG Dongyan, XIA Yue, LI Yuhong. First-principles Study of Structural, Mechanical and Thermal Properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er)[J]. Nuclear Physics Review, 2019, 36(2): 248-255. doi: 10.11804/NuclPhysRev.36.02.248
Citation: LIU Huan, LIU Chenguang, YANG Dongyan, XIA Yue, LI Yuhong. First-principles Study of Structural, Mechanical and Thermal Properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er)[J]. Nuclear Physics Review, 2019, 36(2): 248-255. doi: 10.11804/NuclPhysRev.36.02.248

First-principles Study of Structural, Mechanical and Thermal Properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er)

doi: 10.11804/NuclPhysRev.36.02.248
Funds:  National Natural Science Foundation of China (11775102)
  • Received Date: 2018-09-19
  • Rev Recd Date: 2019-03-05
  • Publish Date: 2019-06-20
  • In this work, we studied the structural, mechanical, and thermal properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er) pyrochlores by the first-principles calculations combining with the quasi-harmonic approximation. Our study reveals that RE2Ti2O7 possess excellent resistance to compression and shear at the ground state. Moreover, these compounds can be approximate to elastically isotropic materials because their Zener ratios are close to 1. The obtained thermal expansion coefficient agrees well with the experimental results at high temperature. The mean thermal expansion coefficient of the RE2Ti2O7 compound is about (10.4~13.1)×10-6 K-1 in the temperature range of 500~1 500 K. We also employed Slack's model to estimate thermal conductivity, and the results located in the range of 1.5~4.9 W·m-1·K-1 at 1 000 K.
  • [1] EWING R C. J Appl Phys, 2004, 95:5949.
    [2] EWING R C, LUTZE W. Ceram Int, 1991, 17:287.
    [3] SUBRAMANIAN M A, ARAVAMUDAN G, SUBBA RAO G V. Prog Solid State Chem, 1983, 15:55.
    [4] HENCH L L, CLARK D E, CAMPBELL J. Nucl Chem Waste Manag, 1984, 5:149.
    [5] KAMIZONO H, HAYAKAWA I, MURAOKA S. J Am Ceram Soc, 1991, 74:863.
    [6] WEBER W J, NAVROTSKY A, STEFANOVSKY S, et al. MRS Bull, 2011, 34:46.
    [7] HAYAKAWA I, KAMIZONO H. J Nucl Mater, 1993, 202:163.
    [8] HAYAKAWA I, KAMIZONO H. J Mater Sci, 1993, 28:513.
    [9] HAYAKAWA I, KAMIZONO H. MRS Proc, 2011, 257:257.
    [10] FENG J, XIAO B, WAN C L, et al. Acta Mater, 2011, 59:1742.
    [11] CHEN Z J, XIAO H Y, ZU X T, et al. Comput Mater Sci, 2008, 42:653.
    [12] LIAN J, CHEN J, WANG L M, et al. Phys Rev B, 2003, 68:134107.
    [13] LUMPKIN G R. Elements, 2006, 2:365.
    [14] SICKAFUS K E. Science (80), 2000, 289:748.
    [15] WANG S X, BEGG B D, WANG L M, et al. J Mater Res, 2011, 14:4470.
    [16] LIAN J, WANG L, CHEN J, et al. Acta Mater, 2003, 51:1493.
    [17] SICKAFUS K E, GRIMES R W, VALDEZ J A, et al. Nat Mater, 2007, 6:217.
    [18] LANG M, ZHANG F X, EWING R C, et al. J Mater Res, 2011, 24:1322.
    [19] LANG M, ZHANG F, ZHANG J, et al. Nucl Instr and Meth B, 2010, 268:2951.
    [20] LIAN J, EWING R C, WANG L M, et al. J Mater Res, 2011, 19:1575.
    [21] SATTONNAY G, MOLL S, THOMÉ L, et al. Nucl Instr and Meth B, 2012, 272:261.
    [22] MORIGA T, YOSHIASA A, KANAMARU F, et al. Solid State Ionics, 1989, 31:319.
    [23] VASSEN R, CAO X, TIETZ F, et al. J Am Ceram Soc, 2004, 83:2023.
    [24] WU J, WEI X. Slack's model estimated the thermal conductivity N P, et al. J Am Ceram Soc,2004, 85:3031.
    [25] PRUNEDA J M, ARTACHO E. Phys Rev B,2005, 72:085107.
    [26] SURESH G, SEENIVASAN G, KRISHNAIAH M V, et al. J Nucl Mater, 1997, 249:259.
    [27] LUTIQUE S, KONINGS R J M, RONDINELLA V V, et al. J Alloys Compd, 2003, 352:1.
    [28] LUTIQUE S, JAVORSKÝ P, KONINGS R J M, et al. J Chem Thermodyn, 2003, 35:955.
    [29] LEHMANN H, PITZER D, PRACHT G, et al. J Am Ceram Soc, 2003, 86:1338.
    [30] BANSAL N P, ZHU D. Mater Sci Eng A, 2007, 459:192.
    [31] LIU Z G, OUYANG J H, ZHOU Y. J Alloys Compd, 2009, 472:319.
    [32] FENG J, XIAO B, ZHOU R, et al. Scr Mater, 2013, 68:727.
    [33] LAN G, OUYANG B, SONG J. Acta Mater, 2015, 91:304.
    [34] FENG J, XIAO B, ZHOU R, et al. Scr Mater, 2013, 69:401.
    [35] LIU Z G, OUYANG J H, ZHOU Y, et al. Mater Lett, 2008, 62:4455.
    [36] LIU Z G, OUYANG J H, ZHOU Y, et al. Mater Des, 2009, 30:3784.
    [37] LIU B, WANG J Y, LI F Z, et al. Acta Mater, 2010, 58:4369.
    [38] DONG L, LI Y, DEVANATHAN R, et al. RSC Adv, 2016, 6:41410.
    [39] KRESSE G, FURTHMÜLLER J. Comput Mater Sci, 1996, 6:15.
    [40] BLÖCHL P E. Phys Rev B, 1994, 50:17953.
    [41] PERDEW J P, JACKSON K A, PEDERSON M R, et al. Phys Rev B, 1992, 46:6671.
    [42] BARONI S, DE GIRONCOLI S, DAL CORSO A. Rev Mod Phys, 2001, 73:515.
    [43] TOGO A, OBA F, TANAKA I. Phys Rev B, 2008, 78:134106.
    [44] DAVIES G F. J Phys Chem Solids, 1973, 34:1417.
    [45] TABIRA Y, WITHERS R L, MINERVINI L, et al. J Solid State Chem, 2000, 153:16.
    [46] ZHANG Z L, XIAO H Y, ZU X T, et al. J Mater Res, 2011, 24:1335.
    [47] KUMAR S, GUPTA H C. Vib Spectrosc, 2012, 62:180.
    [48] NYE J F. Physical Properties of Crystals:Their Representation by Tensors and Matrices[M]. United states, Oxford University Press Inc, 1985:351.
    [49] WONG J, KRISCH M, FARBER D L, et al. Phys Rev B, 2005, 72:064115.
    [50] LIU C G, CHEN L J, YANG D Y, et al. Comput Mater Sci, 2016, 114:233.
    [51] INGEL R P, Ⅲ D L. J Am Ceram Soc, 1988, 71:265.
    [52] SLACK G A. Solid State Phys, 1979, 34:1.
    [53] KITTEL C. Introduction to Solid State Physics[M] 8th Ed. New Jersey:John Wiley & Sons, 2004:114.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1317) PDF downloads(69) Cited by()

Proportional views

First-principles Study of Structural, Mechanical and Thermal Properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er)

doi: 10.11804/NuclPhysRev.36.02.248
Funds:  National Natural Science Foundation of China (11775102)

Abstract: In this work, we studied the structural, mechanical, and thermal properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er) pyrochlores by the first-principles calculations combining with the quasi-harmonic approximation. Our study reveals that RE2Ti2O7 possess excellent resistance to compression and shear at the ground state. Moreover, these compounds can be approximate to elastically isotropic materials because their Zener ratios are close to 1. The obtained thermal expansion coefficient agrees well with the experimental results at high temperature. The mean thermal expansion coefficient of the RE2Ti2O7 compound is about (10.4~13.1)×10-6 K-1 in the temperature range of 500~1 500 K. We also employed Slack's model to estimate thermal conductivity, and the results located in the range of 1.5~4.9 W·m-1·K-1 at 1 000 K.

LIU Huan, LIU Chenguang, YANG Dongyan, XIA Yue, LI Yuhong. First-principles Study of Structural, Mechanical and Thermal Properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er)[J]. Nuclear Physics Review, 2019, 36(2): 248-255. doi: 10.11804/NuclPhysRev.36.02.248
Citation: LIU Huan, LIU Chenguang, YANG Dongyan, XIA Yue, LI Yuhong. First-principles Study of Structural, Mechanical and Thermal Properties of RE2Ti2O7 (RE=Gd, Y, Ho, Er)[J]. Nuclear Physics Review, 2019, 36(2): 248-255. doi: 10.11804/NuclPhysRev.36.02.248
Reference (53)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return