Advanced Search

WU Biaogang, CHEN Baoyi, ZHAO Xingbo. Effect of Strong Electric Field on the Evolution of Charmonium in Quark Gluon Plasma[J]. Nuclear Physics Review, 2019, 36(3): 278-288. doi: 10.11804/NuclPhysRev.36.03.278
Citation: WU Biaogang, CHEN Baoyi, ZHAO Xingbo. Effect of Strong Electric Field on the Evolution of Charmonium in Quark Gluon Plasma[J]. Nuclear Physics Review, 2019, 36(3): 278-288. doi: 10.11804/NuclPhysRev.36.03.278

Effect of Strong Electric Field on the Evolution of Charmonium in Quark Gluon Plasma

doi: 10.11804/NuclPhysRev.36.03.278
Funds:  National Natural Science Foundation of China(11705125); New faculty startup funding by Institute of Modern Physics, Chinese Academy of Sciences
  • Received Date: 2019-03-25
  • Rev Recd Date: 2019-05-05
  • Publish Date: 2019-09-20
  • In ultra-relativistic heavy-ion collisions, the strong electric field can be produced by the colliding nuclei. The magnitude of the electric field E is on the order of eE~mπ2 at the early stage of the collision. In quark gluon plasma (QGP), such a strong electric field can have a significant impact on the evolution of charmonia. We employ the time-dependent Schrödinger equation to study the evolution of charmonium states in the strong electric field generated by the moving charges. The electric field can result in transitions between charmonium states with different angular momenta. In order to see this effect, we make comparisons between the yields of J/ψ, ψ' and χc with and without the electric field. The results show that the electric field generated by the moving heavy ions induces dissociation of J/ψ. In the meantime, χc is generated via the transition from J/ψ by the electric field.
  • [1] LUZUM M, ROMATSCHKE P. Phys Rev C, 2008, 78:034915.
    [2] SONG H, BASS S A, HEINZ U, et al. Phys Rev Lett, 2011, 106:192301.
    [3] CHANG N, CAO S, CHEN B, et al. Phys Lett B, 2004, 595:165.
    [4] RELAÑO A, GÓMEZ J M G, MOLINA R A, et al. Phys Rev Lett, 2002, 89:252301.
    [5] AAMODT K, ABRAHANTES A, ADAMOVA D, et al. Phys Lett B, 2011, 696:30.
    [6] LIN Z, KO C M, LI B, et al. Phys Rev C, 2005, 72:064901.
    [7] MATSUI T, SATZ H. Phys Lett B, 1986, 178:416.
    [8] EICHTEN E, GOTTFRIED K, KINOSHITA T, et al. Phys Rev D, 1978, 17:3090.
    [9] EICHTEN E, GOTTFRIED K, KINOSHITA T, et al. Phys Rev D, 1980, 21:203.
    [10] CREUTZ M, HORVÁTH I. Phys Rev D, 1994, 50:3.
    [11] EICHTEN E, GOTTFRIED K, KINOSHITA T, et al. Phys Rev Lett, 1975, 34:6.
    [12] KARSCH F, LAERMANN E. arXiv:hep-lat/0305025.
    [13] BZDAK A, VLADIMIR S. Phys Rev B, 2012, 710:171.
    [14] KARSCH F, PETRONZIO R. Z Phys C, 1988, 37:627.
    [15] SATZ H. Journal of Physics G:Nuclear and Particle Physics, 2006, 32:R25.
    [16] KARSCH F, MEHR M T, SATZ H. Z. Phys. C, 1988, 37:617.
    [17] GRECO V, VAN HEES H, RAAP R. AIP Conf Proc, 2012, 1442:117.
    [18] DENG W, HUANG X. Phys Rev C, 2012, 85:044907.
    [19] JACKSON J. Classical Electrodynamics[M]. 3rd ed. New Jersey:Wiley, 1998.
    [20] HEYDE K. Basic Ideas and Concepts in Nuclear Physics:An Introduction Approach[M]. London:Bristol and Philadelphia, 1994.
    [21] EARDEN I G B, BEAVIS D, BESLIU C, et al (BRAHMS Collaboration). Phys Rev Lett 2004, 93:102301.
    [22] JORKEN J D B. Phys Rev D, 1983, 27:140.
    [23] GUO X, SHI S, XU N. et al. Phys Rev B, 2015751:215.
    [24] TUCHIN K. Adv High Energy Phys, 2013, 2013:490495.
    [25] TOSHIAKI I. Phys Rev E, 1994, 49:4684.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1359) PDF downloads(90) Cited by()

Proportional views

Effect of Strong Electric Field on the Evolution of Charmonium in Quark Gluon Plasma

doi: 10.11804/NuclPhysRev.36.03.278
Funds:  National Natural Science Foundation of China(11705125); New faculty startup funding by Institute of Modern Physics, Chinese Academy of Sciences

Abstract: In ultra-relativistic heavy-ion collisions, the strong electric field can be produced by the colliding nuclei. The magnitude of the electric field E is on the order of eE~mπ2 at the early stage of the collision. In quark gluon plasma (QGP), such a strong electric field can have a significant impact on the evolution of charmonia. We employ the time-dependent Schrödinger equation to study the evolution of charmonium states in the strong electric field generated by the moving charges. The electric field can result in transitions between charmonium states with different angular momenta. In order to see this effect, we make comparisons between the yields of J/ψ, ψ' and χc with and without the electric field. The results show that the electric field generated by the moving heavy ions induces dissociation of J/ψ. In the meantime, χc is generated via the transition from J/ψ by the electric field.

WU Biaogang, CHEN Baoyi, ZHAO Xingbo. Effect of Strong Electric Field on the Evolution of Charmonium in Quark Gluon Plasma[J]. Nuclear Physics Review, 2019, 36(3): 278-288. doi: 10.11804/NuclPhysRev.36.03.278
Citation: WU Biaogang, CHEN Baoyi, ZHAO Xingbo. Effect of Strong Electric Field on the Evolution of Charmonium in Quark Gluon Plasma[J]. Nuclear Physics Review, 2019, 36(3): 278-288. doi: 10.11804/NuclPhysRev.36.03.278
Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return