Advanced Search

CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
Citation: CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305

Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode

doi: 10.11804/NuclPhysRev.36.03.305
Funds:  National Key R&D Program of China (2016YFA0400504); National Natural Science Foundation of China (11605252, 11605248)
  • Received Date: 2018-10-21
  • Rev Recd Date: 2019-03-06
  • Publish Date: 2019-09-20
  • The latest developments of measurements and corrections of the transition energy of the cooling storage ring CSRe at the Lanzhou are reviewed in this paper. The principle of the method used to measure the transition energy of the storage ring CSRe is introduced. This method was used to investigate the influence of dipole magnetic fields, quadrupole magnetic fields and sextupole magnetic fields on the transition energy curve. Experimental results show that the transition energy curve can be horizontally, vertically shifted as well as rotated, by varying dipole magnetic fields, quadrupole magnetic fields and sextupole magnetic fields, respectively. With the corrections of the quadrupole magnets and sextupole magnets at the CSRe, the mass resolving power R for the target nuclei was improved from R=3.15(9)×104 (relative error of revolution time σT/T=7.3(2)×10-6) to 1.72(4)×105 (σT/T=1.34(3)×10-6).
  • [1] LUNNEY D, PEARSON J M, THIBAULT C. Reviews of Modern Physics, 2003, 75(3):1021.
    [2] BLAUM K. Physics Reports, 2006, 425(1):1.
    [3] BLAUM K, LITVINOV Y A. International Journal of Mass Spectrometry, 2013, 349-350:1.
    [4] ZHANG Y H, LITVINOV Y A, UESAKA T, et al. Physica Scripta, 2016, 91(7):073002.
    [5] LITVINOV Y A, GEISSEL H, KNöBEL R, et al. Acta Physica Polonica B, 2010, 41(2):511.
    [6] BOSCH F, LITVINOV Y A, STÖHLKER T. Progress in Particle and Nuclear Physics, 2013, 73:84.
    [7] HAUSMANN M, STADLMANN J, ATTALLAH F, et al. Hyperfine Interactions, 2001, 132(1):291.
    [8] STADLMANN J, HAUSMANN M, ATTALLAH F, et al. Physics Letters B, 2004, 586(1):27.
    [9] SUN B, KNÖBEL R, LITVINOV Y A, et al. Nuclear Physics A, 2008, 812:1.
    [10] KNÖBEL R, DIWISCH M, BOSCH F, et al. Physics Letters B, 2016, 754:288.
    [11] KNÖBEL R, DIWISCH M, GEISSEL H, et al. The European Physical Journal A, 2016, 52(5):138.
    [12] WANG M, XU H S, XIA J W, et al. International Journal of Modern Physics E, 2009, 18(2):352.
    [13] TU X L, WANG M, LITVINOV Y A, et al. Nucl Instr and Meth A, 2011, 654(1):213.
    [14] TU X L, XU H S, WANG M, et al. Physical Review Letters, 2011, 106(112501).
    [15] ZHANG Y H, XU H S, LITVINOV Y A, et al. Physical Review Letters, 2012, 109(102501).
    [16] YAN X L, XU H S, LITVINOV Y A, et al. The Astrophysical Journal, 2013, 766(1):L8.
    [17] SHUAI P, XU H S, TU X L, et al. Physics Letters B, 2014, 735:327.
    [18] XU X, ZHANG P, SHUAI P, et al. Physical Review Letters, 2016, 117(18):182503.
    [19] ZHANG P, XU X, SHUAI P, et al. Physics Letters B, 2017, 767:20.
    [20] FU C Y, ZHANG Y H, ZHOU X H, et al. Physical Review C, 2018, 98(1):014315.
    [21] XING Y M, LI K A, ZHANG Y H, et al. Physics Letters B, 2018, 781:358.
    [22] ZHANG Y H, ZHANG P, ZHOU X H, et al. Physical Review C, 2018, 98(1):014319.
    [23] OZAWA A, UESAKA T, WAKASUGI M. Progress of Theoretical and Experimental Physics, 2012, 2012(1):03C009.
    [24] YAMAGUCHI T, YAMAGUCHI Y, OZAWA A. International Journal of Mass Spectrometry, 2013, 349-350:240-246.
    [25] YAMAGUCHI Y, WAKASUGI M, UESAKA T, et al. Nucl Instr and Meth B, 2013, 317:629.
    [26] YAMAGUCHI Y, MIURA H, WAKASUGI M, et al. Physica Scripta, 2015, 2015(T166):014056.
    [27] YAMAGUCHI T for the Rare-RI Ring collaboration. Physica Scripta, 2015, 2015(T166):014039.
    [28] YANG J C, XIA J W, XIAO G Q, et al. Nucl Instr and Meth B, 2013, 317:263.
    [29] WU B, YANG J C, XIA J W, et al. Nucl Instr and Meth A, 2018, 881:27.
    [30] WU Bo, YANG Jiancheng, GE Wenwen, et al. Nuclear Physics Review, 2018, 35(3):270. (in Chinese) (吴波, 杨建成, 葛文文, 等. 原子核物理评论, 2018, 35(3):270.)
    [31] GE Wenwen, YUAN Youjin, YANG Jiancheng, et al. Nuclear Physics Review, 2018, 35(2):147. (in Chinese) (葛文文, 原有进, 杨建成, 等. 原子核物理评论, 2018, 35(2):147.)
    [32] MA X, WEN W Q, ZHANG S F, et al. Nucl Instr and Meth B, 2017, 408:169.
    [33] FAIR. Baseline Technical Report[EB/OL] [2018-09-20].
    [34] WOLLNIK H. Nucl Instr and Meth B, 1987, 26:267.
    [35] HAUSMANN M, ATTALLAH F, BECKERT K, et al. Nucl Instr and Meth A, 2000, 446(3):569.
    [36] FRANZKE B, GEISSEL H, MUNZENBERG G. Mass Spectrometry Reviews, 2008, 27(5):428.
    [37] TRÖTSCHER J, BALOG K, EICKHOFF H, et al. Nucl Instr and Meth B, 1992, 70(1-4):455.
    [38] MEI B, TU X L, WANG M, et al. Nucl Instr and Meth A, 2010, 624(1):109.
    [39] ZHANG W, TU X L, WANG M, et al. Nucl Instr and Meth A, 2014, 756:1.
    [40] DOLINSKII A, GEISSEL H, LITVINOV S, et al. Nucl Instr and Meth B, 2008, 266(19-20):4579.
    [41] CHEN R J, YUAN Y J, WANG M, et al. Physica Scripta, 2015, T166:014044.
    [42] DOLINSKII A, LITVINOV S, STECK M, et al. Nucl Instr and Meth A, 2007, 574(2):207.
    [43] LITVINOV S, TOPREK D, WEICK H, et al. Nucl Instr and Meth A, 2013, 724:20.
    [44] GEISSEL H, KNöBEL R, LITVINOV Y A, et al. Hyperfine Interactions, 2006, 173(1-3):49.
    [45] GEISSEL H, LITVINOV Y A. Journal of Physics G:Nuclear and Particle Physics, 2005, 31(10):S1779.
    [46] XING Y M, WANG M, ZHANG Y H, et al. Physica Scripta, 2015, T166:014010.
    [47] XU X, WANG M, SHUAI P, et al. Chinese Physics C, 2015, 39(10):106201.
    [48] SHUAI P, XU X, ZHANG Y H, et al. Nucl Instr and Meth B, 2016, 376:311.
    [49] CHEN R J, YAN X L, GE W W, et al. Nucl Instr and Meth A, 2018, 898:111.
    [50] GE W W, YUAN Y J, YANG J C,et al. Nucl Instr and Meth A, 2018, 908:388.
    [51] XIA J W, ZHAN W L, WEI B W, et al. Nucl Instr and Meth A, 2002, 488(1-2):11.
    [52] XIA J W, ZHAN W L, WEI B W, et al. High Power Laser and Particle Beams, 2008, 11:1787.
    [53] IU Dawei, WANG Meng, XU Xing, et al. Nuclear Physics Review, 2016, 33(3):302. (in Chinese) (刘大委, 王猛, 徐星, 等. 原子核物理评论, 2016, 33(3):302.)
    [54] CHEN R J, WANG M, YAN X L, et al. Computer Physics Communications, 2017, 221(Supplement C):216.
    [55] YAN Xinliang. Precision Mass Measurements of Neutrondeficient Nuclei in Storage Rings[D]. Beijing:University of Chinese Academy of Sciences, 2014. (in Chinese) (颜鑫亮. 储存环上短寿命缺中子核素的精确质量测量[D]. 北京:中国科学院大学, 2014.)
    [56] SHUAI Peng. Accurate Mass Measurements of Short-lived Nuclides at the HIRF-CSR facility[D]. Hefi:University of Science and Technology of China, 2014. (in Chinese) (帅鹏. HIRFL-CSR上短寿命核素质量的精确测量[D]. 合肥:中国科学技术大学, 2014.)
    [57] TARASOV O B, BAZIN D. Nucl Instr and Meth B, 2008, 266(19-20):4657. http://lise.nscl.msu.edu and https://webdocs.gsi.de/weick/atima/
    [58] HUANG W J, AUDI G, WANG M, et al. Chinese Physics C, 2017, 41(3).
    [59] YAN X L, CHEN R J, WANG M, et al. Nucl Instr and Meth A, 2019, 931:52.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1411) PDF downloads(83) Cited by()

Proportional views

Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode

doi: 10.11804/NuclPhysRev.36.03.305
Funds:  National Key R&D Program of China (2016YFA0400504); National Natural Science Foundation of China (11605252, 11605248)

Abstract: The latest developments of measurements and corrections of the transition energy of the cooling storage ring CSRe at the Lanzhou are reviewed in this paper. The principle of the method used to measure the transition energy of the storage ring CSRe is introduced. This method was used to investigate the influence of dipole magnetic fields, quadrupole magnetic fields and sextupole magnetic fields on the transition energy curve. Experimental results show that the transition energy curve can be horizontally, vertically shifted as well as rotated, by varying dipole magnetic fields, quadrupole magnetic fields and sextupole magnetic fields, respectively. With the corrections of the quadrupole magnets and sextupole magnets at the CSRe, the mass resolving power R for the target nuclei was improved from R=3.15(9)×104 (relative error of revolution time σT/T=7.3(2)×10-6) to 1.72(4)×105 (σT/T=1.34(3)×10-6).

CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
Citation: CHEN Ruijiu, GE Wenwen, YAN Xinliang, YUAN Youjin, WANG Meng, ZHANG Yuhu. Measurements and Corrections of the Lorentz Factor of Transition Energy of the CSRe Storage Ring in the Isochronous Mode[J]. Nuclear Physics Review, 2019, 36(3): 305-312. doi: 10.11804/NuclPhysRev.36.03.305
Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return