Advanced Search
Volume 36 Issue 4
Mar.  2020
Turn off MathJax
Article Contents

LONG Yin, SUN Xiaojun, PENG Haiyuan. Statistical Features of the First Excitation Energy of Nuclei[J]. Nuclear Physics Review, 2019, 36(4): 408-413. doi: 10.11804/NuclPhysRev.36.04.408
Citation: LONG Yin, SUN Xiaojun, PENG Haiyuan. Statistical Features of the First Excitation Energy of Nuclei[J]. Nuclear Physics Review, 2019, 36(4): 408-413. doi: 10.11804/NuclPhysRev.36.04.408

Statistical Features of the First Excitation Energy of Nuclei

doi: 10.11804/NuclPhysRev.36.04.408
Funds:  Guangxi Natural Science Foundation (2019GXNSFDA185011);National Natural Science Foundation of China (11465005);Open Project of Key Laboratory of Nuclear Physics of Guangxi Normal University(201801);Hechi College School Project(2018XJQN009)
  • Received Date: 2019-07-26
  • Rev Recd Date: 2019-10-22
  • Publish Date: 2019-12-20
  • The first excited state plays a significant role for all excited states of nuclei besides the ground state. The first excitation energy which can directly reflect the stability of the nuclei to some extent is one of the most important features of the excited states. Through statistical analysis of the first excitation energies of 2 125 nuclei, one can find that the first excitation energies at the traditional magic number positions are significantly higher than those of the adjacent nuclei, as well as the nuclei with the highest first excited energy of both the isotopic and isotonic chains. For a small number of nuclei significantly deviating from the positions of the traditional magic number, it is also found that their high first excitation energies were the Isobaric Analog States (IAS) of the adjacent nuclei or some mixed levels of fissile nuclei. For the highest first excitation energy of the isotopic and isotonic chains, the number of their spins and parities with 2+ of the first excited state is most up to 42%. For even-even nuclei in the range of mass number 100~200, the first excitation energies can be described by the exponential decay function with the valence nucleon NpNn.
  • [1] GUO B, WANG N Y. Sci Sin-Phys Mech Astron, 2017, 60(10):102031.
    [2] XIA X W, LIN Y, ZHAO P W, et al. At Data Nucl Data Tables, 2017, 121-122:1.
    [3] YANG C Z. Acta Physica Sinica, 1962, 18(6):275.(in Chinese)(杨澄中.物理学报, 1962, 18(6):275.)
    [4] MENG J, GUO J Y, LI J, et al. Progress in Physics, 2011, 31(4):199.(in Chinese)(孟杰,郭建友,李剑,等.物理学进展, 2011, 31(4):199.)
    [5] MENG J. Sci Sin-Phys Mech Astron, 2016, 46(1):012001.(in Chinese)(孟杰.中国科学:物理学力学天文学, 2016, 46(1):012001.)
    [6] ZHANG J S, HAN Y L. Commun Theor Phys, 2001, 36(04):437.
    [7] ZHANG J S, HAN Y L. Commun Theor Phys, 2002, 37(04):465.
    [8] DUAN J F, ZHANG J S, WU H C, et al. Phys Rev C, 2009, 80(6):064612.
    [9] DUAN J F, ZHANG J S, WU H C, et al. Commun Theor Phys, 2010, 54(01):129.
    [10] ZHANG J S. Commun Theor Phys, 2003, 39(04):433.
    [11] ZHANG J S. Commun Theor Phys, 2003, 39(01):83.
    [12] ZHANG J S, HAN Y L, GAO L G. Nucl Sci Eng, 1999, 133(2):218.
    [13] SUN X J, DUAN J F, WANG J M, et al. Commun Theor Phys, 2007, 48(03):534.
    [14] SUN X J, QU W J, DUAN J F, et al. Phys Rev C, 2008, 78(5):054610.
    [15] YAN Y L, DUAN J F, SUN X J, et al. Commun Theor Phys, 2005, 44(01):128.
    [16] ZHANG J S, HAN Y L, FAN X L. Commun Theor Phys, 2001, 35(05):579.
    [17] DUAN J F, YAN Y L, WANG J M, et al. Commun Theor Phys, 2005, 44(04):701.
    [18] DUAN J F, YAN Y L, SUN X J, et al. Commun Theor Phys, 2007, 47(01):102.
    [19] SUN X J, ZHANG J S. Phys Rev C, 2015, 92(06):061601(R).
    [20] SUN X J, ZHANG J S. Phys Rev C, 2016, 93(1):014609.
    [21] GOLDHABER G S. Phys Rev, 1953, 90(4):587.
    [22] KANUNGO R, TANIHATA I, OZAWA A. Phys Lett B, 2002, 528(1-2):58.
    [23] http://www.nndc.bnl.gov/nudat2/.
    [24] MA L, ZHANG Z Y, GAN Z G, et al. Phys Rev C, 2015, 91:051302(R).
    [25] XU X, ZHANG P, SHUAI P, et al. Phys Rev Lett, 2016, 117:182503.
    [26] PONCE F, SWANBERG E, BURKE J, et al. Phys Rev C, 2018, 97(5):054310.
    [27] ADSLEY P, BRüMMER J W, FAESTERMANN T. Phys Rev C, 2018, 97(4):045807.
    [28] ZHELTONOZHSKY V A, SAVRASOV A M, STRILCHUK N V, et al. Europhys Lett, 2018, 121(1):12001.
    [29] WANG M, AUDI G, KONDEV F G, et al. Chinese Physics C, 2017, 41(3):030003.
    [30] SINGH B, CHEN J. Nuclear Data Sheets, 2015, 126(3):138.
    [31] BURROWS T W. Nuclear Data Sheets, 2007, 108(5):1049.
    [32] ELEKES Z, TIMAR J. Nuclear Data Sheets, 2011, 112(1):121.
    [33] YAN X L, XU H S, LITVINOV Y A, et al. Astrophysical Journal Letters, 2013, 766:8.
    [34] BROWNE E, TULI J K. Nuclear Data Sheets, 2010, 111(9):2542.
    [35] TU X L, XU H S, WANG M, et al. Phys Rev C, 2011, 106(11):112501.
    [36] SINGH B. Nuclear Data Sheets, 2004, 101(2):317.
    [37] BROWNE E, TULI J K. Nuclear Data Sheets, 2007, 108(3):759.
    [38] BROWNE E, TULI J K. Nuclear Data Sheets, 2015, 127:315.
    [39] CASTEN R F. Phys Rev Lett, 1985, 54:1991.
    [40] JOHN C H, WOHN F K, LEININGER K, et al. Phys Rev C, 1986, 34:2312.
    [41] BUCURESCU D. Phys Lett B, 1989, 229:321.
    [42] CASTEN R F. J Phys G, 1996, 22:1521.
    [43] ZHAO Y M, ARIMA A. Phys Rev C, 2003, 68:017301.
    [44] BAO M, CHENG Y Y, ZHAO Y M, et al. Phys Rev C, 2017, 95:044301.
    [45] DENG Jungang, CHENG Junhao, CHEN Jiulong, et al. Nuclear Physics Review, 2018, 35(4):463.(in Chinese)(邓军刚,程俊皓,陈玖龙,等.原子核物理评论, 2018, 35(4):463.)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1949) PDF downloads(45) Cited by()

Proportional views

Statistical Features of the First Excitation Energy of Nuclei

doi: 10.11804/NuclPhysRev.36.04.408
Funds:  Guangxi Natural Science Foundation (2019GXNSFDA185011);National Natural Science Foundation of China (11465005);Open Project of Key Laboratory of Nuclear Physics of Guangxi Normal University(201801);Hechi College School Project(2018XJQN009)

Abstract: The first excited state plays a significant role for all excited states of nuclei besides the ground state. The first excitation energy which can directly reflect the stability of the nuclei to some extent is one of the most important features of the excited states. Through statistical analysis of the first excitation energies of 2 125 nuclei, one can find that the first excitation energies at the traditional magic number positions are significantly higher than those of the adjacent nuclei, as well as the nuclei with the highest first excited energy of both the isotopic and isotonic chains. For a small number of nuclei significantly deviating from the positions of the traditional magic number, it is also found that their high first excitation energies were the Isobaric Analog States (IAS) of the adjacent nuclei or some mixed levels of fissile nuclei. For the highest first excitation energy of the isotopic and isotonic chains, the number of their spins and parities with 2+ of the first excited state is most up to 42%. For even-even nuclei in the range of mass number 100~200, the first excitation energies can be described by the exponential decay function with the valence nucleon NpNn.

LONG Yin, SUN Xiaojun, PENG Haiyuan. Statistical Features of the First Excitation Energy of Nuclei[J]. Nuclear Physics Review, 2019, 36(4): 408-413. doi: 10.11804/NuclPhysRev.36.04.408
Citation: LONG Yin, SUN Xiaojun, PENG Haiyuan. Statistical Features of the First Excitation Energy of Nuclei[J]. Nuclear Physics Review, 2019, 36(4): 408-413. doi: 10.11804/NuclPhysRev.36.04.408
Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return