Advanced Search
Volume 37 Issue 3
Sep.  2020
Turn off MathJax
Article Contents

Xin ZHANG, Zhiqiang CHEN, Bingyan LIU, Rui HAN, Guoyu TIAN, Fudong SHI, Hui SUN. Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction[J]. Nuclear Physics Review, 2020, 37(3): 617-620. doi: 10.11804/NuclPhysRev.37.2019CNPC48
Citation: Xin ZHANG, Zhiqiang CHEN, Bingyan LIU, Rui HAN, Guoyu TIAN, Fudong SHI, Hui SUN. Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction[J]. Nuclear Physics Review, 2020, 37(3): 617-620. doi: 10.11804/NuclPhysRev.37.2019CNPC48

Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction

doi: 10.11804/NuclPhysRev.37.2019CNPC48
Funds:  National Natural Science Foundation of China(11875298); Joint Large-Scale Scientific Facility Funds of NSFC and CAS(U1832205)
More Information
  • Corresponding author: E-mail: zqchen@impcas.ac.cn.
  • Received Date: 2020-01-14
  • Rev Recd Date: 2020-06-01
  • Available Online: 2020-09-30
  • Publish Date: 2020-09-20
  • The study of secondary neutrons produced by light charged particles induced reaction is of great significance to the design and optimization of accelerator shielding. The neutron double differential yields from 33 MeV-d, 65 MeV-3He and 65 MeV-4He bombarding thick carbon, copper and lead targets in the directions of $0^{\circ}$, $15^{\circ}$, $45^{\circ}$, $75^{\circ}$, $135^{\circ}$, are calculated by using Geant4 code with INCL, BIC and BERT physics models, and compared with the experimental data. The results show that, for the 33 MeV d-induced reaction, the results from the INCL model basically reproduced the experimental data of carbon and copper targets, but overestimated the neutron yields corresponding to the direct process in lead target. The results from the BIC model and Bert models failed to reproduce the broad peak due to the stripping of the projectiles. For the 65 MeV 3He-induced reaction, the results from the three models could not reproduce the neutrons in the stripping process in the forward angles. The calculated ones with these three models agreed well with the experimental results in other angles. For the 65 MeV 4He-induced reactions, the calculation results of the INCL model are in good agreement with the experimental ones for carbon and copper targets, but underestimated the neutrons for lead target. The calculation results of the BIC model and BERT model underestimated the experimental data for carbon target and slightly overestimated the experimental ones for lead target in large angles.
  • [1] BOLLINGER L. Annual Review of Nuclear and Particle Science, 1986, 36(1): 475. doi:  10.1146/annurev.ns.36.120186.002355
    [2] 肖国青, 徐瑚珊, 王思成. 原子核物理评论, 2017, 34(3): 275. doi:  10.11804/NuclPhysRev.34.03.275

    XIAO Guoqing, XU Hushan, WANG Sicheng, et al. Nuclear Physics Review, 2017, 34(3): 275. (in Chinese) doi:  10.11804/NuclPhysRev.34.03.275
    [3] AGOSTINELLI S, ALLISON J, AMAKO K, et al. Nucl Instr and Meth A, 2003, 506(3): 250. doi:  10.1016/S0168-9002(03)01368-8
    [4] ALLISON J, AMAKO K, APOSTOLAKIS J, et al. Nucl Instr and Meth A, 2016, 835: 186. doi:  10.1016/j.nima.2016.06.125
    [5] BRIESMEISTER J F. MCNP–A General Monte Carlo N-Particle Transport Code, Version 4A[R]. Los Alamos National Laboratory, LA-12625, 1993.
    [6] GIUSEPPE B, TILL B, FRANCESCO C, et al. Annals of Nuclear Energy, 2015, 82: 10. doi:  10.1016/j.anucene.2014.11.007
    [7] TATSUHIKO S, YOSUKE I, SHINTARO H, et al. J Nucl Sci Technol, 2018, 55(6): 684. doi:  10.1080/00223131.2017.1419890
    [8] YOSUKE I, TATSUHIKO S, SHINTARO H, et al. J Nucl Sci Technol, 2017, 54(5): 617. doi:  10.1080/00223131.2017.1297742
    [9] 张苏雅拉吐, 罗飞, 陈志强, 等. 原子核物理评论, 2016, 33(3): 370. doi:  10.11804/NuclPhysRev.33.03.370

    ZHANG Suyalatu, LUO Fei, CHEN Zhiqiang, et al. Nuclear Physics Review, 2016, 33(3): 370. (in Chinese) doi:  10.11804/NuclPhysRev.33.03.370
    [10] 宋林, 陈志强, 韩瑞, 等. 原子核物理评论, 2018, 35(1): 100. doi:  10.11804/NuclPhysRev.35.01.100

    SONG Lin, CHEN Zhiqiang, HAN Rui, et al. Nuclear Physics Review, 2018, 35(1): 100. (in Chinese) doi:  10.11804/NuclPhysRev.35.01.100
    [11] SHIN K, HIBI K, FUJⅡ M, et al. Phys Rev C, 1984, 29(4): 1307. doi:  10.1103/PhysRevC.29.1307
    [12] DAVIDE M, ALAIN B, JOSEPH C, et al. Phys Rev C, 2014, 90(5): 054.
    [13] FOLGER G, IVANCHENKO V N, WELLISCH J P, et al. The European Physical Journal A - Hadrons and Nuclei, 2004, 21(3): 407.
    [14] BERTINI H W, GUTHRIE M P. Nucl Phys A, 1971, 169(3): 670. doi:  10.1016/0375-9474(71)90710-X
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(710) PDF downloads(66) Cited by()

Proportional views

Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction

doi: 10.11804/NuclPhysRev.37.2019CNPC48
Funds:  National Natural Science Foundation of China(11875298); Joint Large-Scale Scientific Facility Funds of NSFC and CAS(U1832205)

Abstract: The study of secondary neutrons produced by light charged particles induced reaction is of great significance to the design and optimization of accelerator shielding. The neutron double differential yields from 33 MeV-d, 65 MeV-3He and 65 MeV-4He bombarding thick carbon, copper and lead targets in the directions of $0^{\circ}$, $15^{\circ}$, $45^{\circ}$, $75^{\circ}$, $135^{\circ}$, are calculated by using Geant4 code with INCL, BIC and BERT physics models, and compared with the experimental data. The results show that, for the 33 MeV d-induced reaction, the results from the INCL model basically reproduced the experimental data of carbon and copper targets, but overestimated the neutron yields corresponding to the direct process in lead target. The results from the BIC model and Bert models failed to reproduce the broad peak due to the stripping of the projectiles. For the 65 MeV 3He-induced reaction, the results from the three models could not reproduce the neutrons in the stripping process in the forward angles. The calculated ones with these three models agreed well with the experimental results in other angles. For the 65 MeV 4He-induced reactions, the calculation results of the INCL model are in good agreement with the experimental ones for carbon and copper targets, but underestimated the neutrons for lead target. The calculation results of the BIC model and BERT model underestimated the experimental data for carbon target and slightly overestimated the experimental ones for lead target in large angles.

Xin ZHANG, Zhiqiang CHEN, Bingyan LIU, Rui HAN, Guoyu TIAN, Fudong SHI, Hui SUN. Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction[J]. Nuclear Physics Review, 2020, 37(3): 617-620. doi: 10.11804/NuclPhysRev.37.2019CNPC48
Citation: Xin ZHANG, Zhiqiang CHEN, Bingyan LIU, Rui HAN, Guoyu TIAN, Fudong SHI, Hui SUN. Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction[J]. Nuclear Physics Review, 2020, 37(3): 617-620. doi: 10.11804/NuclPhysRev.37.2019CNPC48
    • 强流超导直线加速器[1]是一种先进的加速器装置,广泛应用于材料辐照损伤研究、重离子治疗、强流中子源、医用同位素生产等领域。CiADS(China initiative Accelerator Driven System)和HIAF(High Intensity heavy-ion Accelerator Facility)等装置已经开始建设[2],强流超导直线加速器是其中重要的组成部分。在强流直线加速器的辐射屏蔽设计和优化中,轻带电粒子与加速器材料相互作用产生的次级中子是需要考虑的因素之一。目前,轻带电粒子诱发核反应产生次级中子的实验数据相对缺乏,而完全通过实验测量相关核数据需要大量费时费力的工作,因此需要可靠的物理模型以及相应的模拟软件来进行计算。目前应用较为广泛的模拟程序有Geant4[3-4]、MCNP5[5]、FLUKA[6]和PHITS[7-8]等。其中Geant4作为开源软件,功能强大且灵活,在辐射防护领域得到了越来越多的应用。已有工作验证了Geant4使用相关物理模型计算中高能轻带电粒子诱发反应产生次级中子的双微分截面的可靠性[9-10]。这些工作主要检验了Geant4模拟0.4~1.6 GeV质子诱发反应的出射中子截面,对于低能轻带电粒子诱发反应的模拟研究还非常少。且在较低能区,轻带电粒子与靶原子核之间的相互作用更为复杂。因此需要对Geant4模拟低能轻带电粒子诱发核反应产生的次级中子进行检验。

      本文利用Geant4程序结合不同的物理模型,计算了轻带电粒子轰击碳、铜、铅等厚靶不同角度出射中子的双微分产额,并与实验数据进行了比较,实验数据来自文献[11]。

    • Geant4是由欧洲核子中心主导开发的基于C++语言编写的软件包,使用蒙特卡罗算法模拟粒子与物质的相互作用。由于其强大的功能和开源特性,应用领域从最初的高能物理不断延伸至核工程、空间物理、核医学、加速器物理等领域。Geant4程序包含了多种用于模拟粒子相互作用的强子物理模型,它们封装在物理列表中。使用Geant4进行模拟时,需要选择物理列表,或者根据需求将不同的物理过程组合起来使用。本文使用了INCL(IntraNuclear Cascade Liege)模型[12]、Bertini模型[13]和BIC(Binary Intranuclear Cascade)[14]模型,分别通过QGSP_INCLXX_HP、QGSP_BERT_HP和QGSP_BIC_HP物理列表实现。其中QGSP(Quark Gluon String model)代表Geant4程序的夸克胶子基础物理模型;HP(High Precision neutron model)代表当入射粒子能量低于20 MeV时,将调用高精度输运模型及相关的评价数据库模拟中子输运过程。INCL模型需要耦合退激模型使用,本研究中选用的是通用退激模型(GEM)。Geant4模拟中使用的靶模型参数与实验一致。从靶中飞出的次级中子被不同角度的虚拟探测器记录,相应的双微分产额由以下公式给出:

      其中:$ \frac{{\rm{d}}^{2}Y}{{\rm{d}}E{\rm{d}}\Omega} $是双微分产额(sr$ ^{-1} \cdot {\rm{MeV}}^{-1} $);$ N_{\rm{n}} $表示某一角度间隔$ \Delta \Omega $(sr)内出射的处于能量间隔$ \Delta E $(MeV)的中子数;$ N_{\rm{p}} $是入射粒子数。

    • 图1为33 MeV的d核轰击厚的C、Cu、Pb靶的出射中子角分布。d核与靶核的相互作用主要有三个过程:d核的削裂过程,弹核与靶核的直接相互作用过程,以及复合核蒸发过程。d核的削裂过程以及直接相互作用产生的次级中子一般集中在前角区发射,而蒸发过程产生的次级中子在整个空间内均匀发射,与出射角度无关。从图1中可以看出,在$ 0^{\circ} $$ 15^{\circ} $范围内,随角度增大次级中子产额下降明显,表明该角度范围内削裂过程及直接相互作用占主导地位。在$ 45^{\circ} $及以上的大角度区域,随角度增大次级中子产额下降趋于平缓,表明该部分中子主要来自蒸发过程的贡献。

      图2展示了利用Geant4模拟程序计算33 MeV的d核轰击厚的C、Cu、Pb靶在$ 0^{\circ} $$ 15^{\circ} $$ 45^{\circ} $$ 75^{\circ} $$ 135^{\circ} $出射方向的中子双微分产额,并将计算结果与实验数据进行了对比。从图中可以看出,在$ 0^{\circ} $$ 15^{\circ} $附近,由于d核削裂过程中子能谱出现了一个宽峰,峰值能量大约为d束能量的一半。对于较轻的靶核,中子能谱变得更硬,这可以通过简单的两体运动能量传递公式来解释:

      其中:$ M_{\rm{p}} $$ M_{\rm{t}} $分别表示弹核和靶核的原子核质量;$ E_{0} $是弹核的初始动能;$ E_{\rm{t}} $是碰撞发生后靶核的动能。从公式中可以看出,对于较轻的靶核,碰撞转移的能量更大,单个核子可以吸收更多的能量。并且相对于重靶,较轻的靶核对应的核子数较少,蒸发过程所占比例也更小。INCL模型的计算结果基本上重现了碳靶和铜靶的实验数据,但高估了铅靶中直接过程产生的中子。BIC模型和BERT模型的计算结果没有重现削裂过程导致的宽峰。

    • 利用Geant4模拟程序计算了65 MeV的3He核轰击厚的C、Cu、Pb靶在$ 0^{\circ} $$ 15^{\circ} $$ 45^{\circ} $$ 75^{\circ} $$ 135^{\circ} $出射方向的中子双微分产额,并与实验数据进行了比较,如图3所示。从图中可以看出中子能谱的形状与d核诱发反应产生的中子能谱形状类似。在$ 0^{\circ} $附近,可以看到3He核削裂过程导致的宽峰,峰值能量大约为3He束流能量的三分之一。INCL模型、BIC模型和BERT模型均未能重现该宽峰。三个模型在其他角度上的计算结果与实验数据符合较好。

    • 利用Geant4模拟程序计算了65 MeV的4He核轰击厚的C、Cu、Pb靶在$ 0^{\circ} $$ 15^{\circ} $$ 45^{\circ} $$ 75^{\circ} $$ 135^{\circ} $出射方向的中子双微分产额,并与实验数据进行了比较,如图4所示。从图中可以看出,对于碳靶,INCL模型的计算结果与实验数据符合较好,BIC模型和BERT模型的计算结果低估了实验数据。对于铜靶,三种模型的计算结果相近,都与实验数据符合较好。对于铅靶,INCL模型的计算结果低估了实验数据,BIC模型和BERT模型的大角度计算结果略高于实验数据。

    • 本文使用Geant4程序结合INCL、BIC、Bert物理模型分别计算了33 MeV的d核、65 MeV的3He核和65 MeV的4He核轰击厚的碳、铜和铅靶在$ 0^{\circ} $$ 15^{\circ} $$ 45^{\circ} $$ 75^{\circ} $$ 135^{\circ} $等出射方向的中子双微分产额,并与实验数据进行了比较。研究表明,对于低能d核诱发的核反应,INCL模型的计算结果基本上再现了碳靶和铜靶的实验数据,但高估了铅靶直接过程对应的中子。BIC模型和BERT模型的计算结果没有重现弹核削裂过程对应的宽峰。对于低能3He诱发的核反应,三个模型的计算结果均未能重现前向角弹核削裂过程产生的中子,其他角度上三个模型的计算结果相近且与实验数据符合较好。对于低能4He诱发的核反应,INCL模型的计算结果与碳靶和铜靶的实验数据符合更好,但低估了铅靶的中子产额。BIC模型和BERT模型的计算结果低估了碳靶的实验数据,略微高估了铅靶大角度上的实验数据。整体来看,低能区轻带电粒子诱发的核反应非常复杂,为了更加精确计算轻带电粒子诱发反应的次级中子产额还需要对物理模型做进一步研究。

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return