文章编号:1007-4627(2002)01-0001-06

正常形变带[521]1/2 的 $\Delta I = 1$ 颤动

吴崇试、潘 奕

(北京大学物理系, 北京 100871:

兰州重离子加速器国家实验室原子核理论中心,甘肃 兰州 730000)

摘 要:系统分析了 $A \approx 170$ 区正常形变带 [521]1/2 中的 $\Delta I = 1$ 颤动现象、根据旋称伙伴带的跃迁能量提取 $\Delta^2 E_r(I) = [E_r(I) + E_r(I-2)]/2 - E_r(I-1)$ 值,表现出旋称相关的规则上下颤动、其颤动幅度在低自旋端约为 50 keV,而后随自旋而增大或减小、大体呈抛物线形、利用改进的 ab 公式,提取了相关的脱耦合系数。运用 Nilsson 波函数,探讨了原子核集体哈密顿量中高阶微扰项的可能形式、

关键词:正常形变带;旋称伙伴带; $\Delta I = 1$ 颤动; 脱耦合效应; 改进的 ab 拟合中图分类号:O571 文献标识码:A

1 引言

严格说来、 $\Delta I = 1$ 颤动是脱耦合现象的一种精细结构。分析表明,在超形变带中,包括奇 A 核和奇奇核,系统地存在 $\Delta I = 1$ 颤动现象 $^{[6-9]}$ 。因此,有必要对正常形变带进行分析,探究在正常形变带中是否也系统存在 $\Delta I = 1$ 颤动的现象。由于这种分

析需要一对旋称伙伴带的足够长的跃迁数据,所以本文只能局限于讨论稀土区的奇 A 核. 作为代表,第二节将系统讨论稀土区奇 A 核中的[521]1/2⁻带. 可以看到,在这些转动带中,的确也存在着 ΔI = 1 颤动现象、我们对这些转动带进行了进一步的唯象分析,采用改进的 ab 公式^[6.7]提取了有关的原子核结构参数,并和 Nilsson 波函数的计算值进行了比较(第三节). 最后,第四节、进行了简单的讨论.

2 [521]1/2⁻带的 Δ*I*=1 颤动

 $\Delta I = 1$ 颤动现象首先是在分析超形变带的跃迁能量 $E_r(I) (\equiv E_r(I+2 \rightarrow I))$ 时发现的。它存在于一对旋称伙伴带之间。方法是在具有确定旋称的一个转动带中,提取相邻跃迁 $I+2 \rightarrow I \rightarrow I-2$ 的能量平均值,然后计算它和旋称伙伴带中跃迁 $I+1 \rightarrow I-1$ 能量之差

$$\Delta^{2} E_{\gamma}(I) = \frac{1}{2} \left[E_{\gamma}(I) + E_{\gamma}(I-2) \right] - E_{\gamma}(I-1) . \tag{1}$$

对于 K=1/2 转动带,在考虑到振动修正及脱耦合项等的影响后,能谱公式应为

收稿日期: 2001 - 07 - 05: 修改日期: 2001 - 09 - 29

^{*} 基金項目: 兰州重离子加速器国家实验室原子核理论中心基金资助项目

作者简介;吴崇武(1938-)。男(汉族)。江苏泰州人、教授、博士生导师、从事核结构理论的研究。

$$E(I) = AI(I+1) - B[I(I+1)]^{2} + C[I(I+1)]^{4} + \cdots + C[I(I+1)]^{$$

其中 a₁ 就是通常的脱耦合常数、b₁ 项可以看成是 对它的修正、由(2)式容易得到

$$\Delta^{2} E_{7}(I) = 12(2I+1)\{-B + C[5I(I-1) + 8] + \cdots \} (-)^{I+1/2},$$

$$4A\{a_{1} - 3b_{1}[I(I+1) + 1] + \cdots \}. \quad (3)$$

可以看出, $\triangle^a E_r(I)$ 由两部分组成. 一部分与旋称无关,随I 而光滑地变化. 对于典型的稀土区变形核, $B \approx 10^{-3}$ keV, $C \approx 10^{-6}$ keV,…,因此,当I 由带首附近增大至(30-40)方时,它将由几乎为 0 而逐渐增大到 10 keV 左右. 另一部分旋称相关,随I 增大而上下起伏. 其典型的特征是: 在带首附近可以表现出幅度或大或小的劈裂(数值为 $4Aa_1$),随着I 的增大,起伏的幅度呈抛物线变化. 这正是我们

最早在奇质量超形变带的分析中看到的现象[6,7].

事实上,分析稀土区正常形变带的跃迁能量,也可以得到类似的结果.作为代表,图 1 给出了 $\pi[521]1/2$ 一转动带的 $\Delta^2 E_i(I)$ 值.从中我们可以看出 $\Delta^3 E_i(I)$ 值的如下变化特点:

- (1) $\Delta^2 E_r(I)$ 值明显地旋称相关. 当旋称 $\alpha = 1/2$ (即 $I = 1/2 \cdot 5/2 \cdot \cdots$) 时 $\Delta^2 E_r(I)$ 为负,而当旋称 $\alpha = -1/2$ (即 $I = 3/2 \cdot 7/2 \cdot \cdots$) 时 $\Delta^2 E_r(I)$ 为正. 至少就现有数据而言,无一例外.
- (2) 在带首附近、 $|\Delta^{\epsilon} E_{\tau}(I)| \approx 40 60 \text{ keV}$. 因为这些带的 $A \approx 13 \text{ keV}$,由此可估出 $a_1 \approx 1$.
- (3) 随着角动量增大, $|\Delta^2 E_r(I)|$ 值的变化的确大体呈抛物线变化。在一定的角动量范围内,绝大多数核的颤动幅度逐渐减小,说明 $b_1 > 0$ 。部分核的 $|\Delta^2 E_r(I)|$ 值在高角动量端急剧上升(如 $^{171.173}$ Hf, 179 W \mathbf{A}^{181} Os)。也有个别核(177 Os)呈现不太规则的变化。

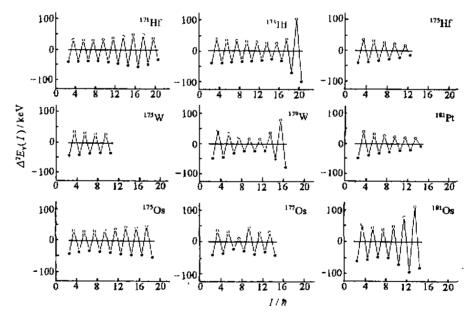


图 1 π[521]1/2 转动带的 Δ' E_i(I)值

●和□分别表示 α=1/2 和-1/2 的 Δ² E_t(I)值、实验数据取自文献[16].

3 唯象分析与模型计算

为了定量地分析 $\pi[521]1/2^-$ 转动带的 $\Delta I = 1$ 颤动现象,并提取出有关的原子核结构的信息,本文仍采用改进的 ab 公式[a, 7]

$$E(I) = a[\sqrt{1 + bI(I+1)} - 1] + (-)^{I+1/2}A(I - \frac{1}{2})[a_1 - b_1I(I+1) - \cdots],$$
(4)

其中 A=ab/2, 正如我们不止一次地指出的, 采用

这个公式的好处是能够使用较少的参数而比较准确 地描写大形变核的转动带。

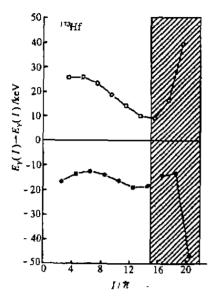


图 2 ¹⁷³ Hf [521] 1/2 ⁻ 带 跃 迁 能 量 E_r(I) 随 I 的 变 化 ○和●分别表示 α=1/2 和-1/2 的 E_r(I)值、为了减小篇幅并 突出突变现象。E_r(I)值中扣除了一组光滑的跃迁能量 E_r(I)值、实验数据取自文献[10].

前面提到,部分核的 $|\Delta^2 E_r(I)|$ 值在高角动量端急剧上升,这应当可以看成是发生带交叉的标志,图 2 给出了 $|\Delta^2 F_r(I)|$ 的跃迁能量随 I 的变化,我们可以看到 $E_r(I)$ 在高角动量端的明显突变,事实上,在这些核的 [521]1/2 带附近,都可以找到自旋字

称均相同的能级(甚至不止一条),因而极易发生带交叉。例如,在¹⁷³Hf 的 33/2 能级(3 001.5 keV)附近,就存在另外两条 33/2 能级,能量为 3 094.7 和 3 105.2 keV;在 37/2 能级(3 640 keV)之上,也测得另一条 37/2 能级,能量为 3 660.9 keV。在 ¹⁷⁹W 和 ^{175.127.181}Os 也存在类似的情况,甚至在 ¹⁷⁵Os 的 25/2 能级(1 770.9 keV)附近,即 1 757.1 keV 处也测得了另一条 25/2 能级。因此,在用改进的 ab 公式拟合能谱(或跃迁能量)时,就应当排除掉这些能级。

这样提取到的[521]1/2-带拟合参数见表 1. 我们看到,这些核的 a_1 (即通常所谓的脱耦合常数)值大都在 0.65-0.80 之间, b_1 值则在 $3\times10^{-4}-2\times10^{-4}$ 的范围. 和大多数核明显不同的是,有两个核的 b_1 取负值. 考虑到 177 Os 的不规则颤动(见图 1).可以预料,这样提取的参数值当然会不太准确. 另一个核(171 Hf)的 $|\Delta^2 E_r(I)|$ 值在带首附近的确随 I 增大而减小,因而预期应该有 $b_1 > 0$. 但由于下降的幅度不大,而且 $|\Delta^2 E_r(I)|$ 值很快就转而上升,因此,从一个比较大的角动量范围(例如 $I \leq 33/2$)来看,则 $\{\Delta^2 E_r(I)\}$ 值在总体上呈上升趋势,因而必然得出 $b_1 < 0$. 正是基于这样的认识,本文下面将集中讨论其余的 7 个核中的[521]1/2-带.

上面提取的参数41和61值来自能谱中的旋

原子核	a ($\sim 10^2$)/keV	$b(\sim 10^3)$	A/keV	u _j	$b_2 (\times 10^4)$	附 注
¹⁷¹ Hf	5.748	4. 278	12. 295	0. 649	-5.173	
-75Ht	8.888	2.886	12, 504	0 773	3.757	多条 I=33/2 和 37/2 能级
175Hf	8. 862	3. 070	13.602	0. 722	9.195	
.7aW	5. 751	4. 826	13.877	υ. 721	5.347	
17970	4. 937	5. 318	15. 753	0. 814	19. 265	多条 I=33/2 能级
¹⁷⁵ Os	3. 644	7, 229	13.169	0.657	2. 673	
¹⁷⁷ Os	4.244	6.593	13.991	0.557	— 3. 47B	多条 I=33/2 能级
ыов	3.758	9. 321	17.146	0.914	19.641	多条 I=25/2 能级
16-Pt	5. 268	5.564	14.657	0, 725	8. 901	

表 1 [521]1/2"带的拟合参数

称相关项,直接反映了 $\Delta I = 1$ 颤动的变化趋势与大小,因此,选取适当形式的剩余相互作用,在集体模型的框架内计算出这两个参数,对于进一步了解

 $\Delta I = 1$ 颤动的机制是十分有意义的. 为此,我们假设这种剩余相互作用的形式为

$$H' = -A(I_- j_+ + I_+ j_-) +$$

$$\kappa_{+}(I_{-}|j_{+}+I_{+}|j_{-}|)^{3}$$
 (5)

其中的第一项就是通常所谓的粒子转动耦合、或称 Coriolis 力,它能产生能谱的脱耦合项,第二项可 以从剩余相互作用的对称性考虑得到,它是更普遍 的多极展开形式

$$\kappa_n(I_- j_+ + I_+ j_-)^n$$
, $n = 2, 3, \cdots$

中的首项(对于奇核 n 只能取奇数值)。经过标准的 角动量计算,就可以得到预期的转动能修正

$$\Delta E = (-)^{l+1/2} A \left(I + \frac{1}{2} \right) \cdot \left[a_1 - b_1 I (I+1) \right]. \tag{6}$$

其中
$$a_1 = \sum_{j} (-1)^{j-1/2} |c_j|^2 \left(j + \frac{1}{2}\right) \cdot \left\{1 + \frac{\kappa_4}{\epsilon 1} \left[\frac{5}{4} j(j+1) - \frac{19}{16}\right]\right\}, \qquad (7)$$

$$b_{1} = \frac{\kappa_{3}}{A} \sum_{j} (-j)^{j-1/2} |c_{j}|^{2} \left(j + \frac{1}{2}\right) \cdot \left(3j(j+1) - \frac{5}{4}\right), \tag{8}$$

c, 是 Nilsson 波函数按 $\langle r|NIj\Omega\rangle$ 基展开的系数, χ_{12} $=\sum c_j\,\chi^c_{1/2},\ \ \diamondsuit$

$$\alpha_0 = \sum_j (-1)^{j-1/2} |c_j|^2 \left(j + \frac{1}{2}\right),$$
 (9)

$$\alpha_{i} = \sum_{j} (-1)^{j-1/2} |\epsilon_{j}|^{2} \left(j + \frac{1}{2}\right) j(j+1) .$$
(10)

则参数 a1, b1 可以写成

$$a_1 = a_1 + \frac{\kappa_3}{A} \left[\frac{5}{4} a_1 - \frac{19}{16} a_0 \right],$$
 (11)

$$b_1 = \frac{\kappa_3}{A} \left[3\alpha_1 - \frac{5}{4}\alpha_0 \right]. \tag{12}$$

由此可见, к。项就完全决定了参数的的大小,同时 也对通常的脱耦合常数 山产生一个小的修正,

由 Nilsson 波函数计算得的 α_0 , α_1 值见图 3. 计 算中质量数固定为 170, 相应的 Nilsson 参数为 κ= 0,063 0, μ=0.603 3. 形变参数取为 ε₂=0.20 -υ. 30, ε, = -0, υ5 - υ. υ5, 这应当覆盖了稀土区 转动核实际形变的大小, 由图可见, 至少对于 [521]1/2-态,这两个参数值对原子核形变并不十 分敏感. 在本文所考虑的形变范围内、3~1-(5/4)α₀值在 31-47 之间,由此可以估计出 κ₃/A≈ 10 1-10-4. 因此、к, 项对脱耦合常数 а, 的修正完 全可以忽略,事实上,从图3就能够看出,4%的计 算值和 41 的拟合值的确十分接近,

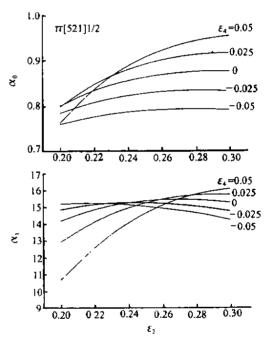


图 3 单粒子态 π[521]1/2-的 α,, α, 值

表 2 [521]1/2-带的耦合强度 k₃/A*

原子核	u ₁	h_{L} (* 10^{-4})	κ_3/A ($< 10^{-6}$)	$\kappa_3 t \sim 10^{-4} \text{ J/keV}$
173Hf	u. 773	3, 757	e. 841	1, 052
175Hf	0.722	٩. 195	2, 059	2, 801
171 W	0.721	5.317	1. 197	1.661
171 W	0.814	19, 265	4. 313	6.794
175O3	0.657	2. 473	0. 598	u. 788
IKI O3	0. 311	19. n41	4. 397	7.539
181 Pt	0. 725	8. 901	1.993	2.921

⁺ $\Re \epsilon_2 = 0.25$, $\epsilon_s = 0$. $\Re \alpha_0 = 0.855$, $\alpha_1 = 15.245$.

为了进一步定出 κ_1 项的强度、我们不妨采用一组固定的形变值、即 $\epsilon_2=0.25$, $\epsilon_4=0.$ 将 ϵ_0 和 ϵ_1 的计算值及 ϵ_1 的拟合值代入(12)式、即可定出 ϵ_3/A . 这样得到的结果见表 2、可以看出、至少就本文讨论的这几个核而言、耦合强度 ϵ_3 的大小可以相差一个量级,因而难以看成是一个常数、

4 结论

- (1) 本文通过对稀土区变形核 ν [521]1/2 旋称伙伴带的系统分析,可以肯定在正常形变带中也存在 $\Delta I=1$ 的顫动现象、根据能谱或跃迁能量提取的 $\Delta^2 E_r(I)$ 值,明显地表现出大幅颤动的现象、参数 δ_1 的大小和奇质量超形变带相近,但和超形变带不同的是,这里涉及的是 K=1/2 带,脱耦合常数(即本文中的参数 a_1)明显不为 0,因而在带首附近 $\Delta^2 E_r(I)$ 值就明显不为 0、
- (2) 需要指出,在正常形变带中,[521] $1/2^-$ 带并不是唯一存在 $\Delta I=1$ 颤动现象的转动带.现有数据表明,在稀土区的 π [411] $1/2^+$ 和 π [541] $1/2^-$ 带中也存在类似的现象、事实上,Bohr 和 Mottelson^[1]就曾经分析过¹⁶⁹Tm 的 π [411] $1/2^+$ 带,指出了脱耦合项中高级效应的存在.此外,在超铀区也可以找到 $\Delta I=1$ 颤动的实例,例如²³⁹Pu 的 ν [631] $1/2^+$ 带.

不仅如此,在 K=3/2 带中同样也存在 $\Delta I=1$ 颤 动,例 如 -55. 157. 159 Tb 中的 π [521] $3/2^-$ 带,155. 157 Gd,157. .59 Dy 和 161 Er 中的 π [411] $3/2^+$ 带,等等、

参考文献:

- [1] Bohr A, Mottelson B R. Nuclear Structure, II Nuclear Deformations [M]. New York; Benjamin Inc. 1975.
- [2] Byrski T, Beck F A, Curien D, et al. Observation of Identical Bands in N=86 Nuclet [J]. Phys Rev Lett. 1990, 64, 1 650 -1 653.
- [3] Stephens F S. Deleplanque M A. Draper J E, et al. Pseudo Symmetry and Quantized Alignment in Nuclei [1]. Phys Rev Lett, 1990, 65, 301-304.
- [4] Flibotte S, Andrews H R, Ball G C, et al. ΔI=4 Bifurcation in a Superdeformed Bans: Evidence for a C, symmetry [J]. Phys Rev Lett. 1993, 71, 4 299-4 302.
- [5] Cederwall B. Janssens R V F. Brinkman M J. et al. New Fea-

(3) 应当说明,所谓 $\Delta I = 1$ 颤动现象,其实只不过是熟知的旋称劈裂的表现之一. 之所以要单独地讨论 $\Delta I = 1$ 颤动现象,最初的原因是在超形变带中,多数尚未能测出旋称伙伴带之间的相对激发能. 通常讨论旋称劈裂的标识量是

$$S(I) = [E(I) - E(I - 1)] - \frac{1}{2} \{ [E(I + 1) - E(I)] + [E(I - 1) - E(I - 2)] \}$$

$$= -\frac{1}{2} [E(I + 1) - 3 E(I) + 3E(I - 1) - E(I - 2)]. \tag{13}$$

不难发现:

 $\Delta^2 E_r(I) = -\left[S(I) + S(I+1)\right]$, (14) 因为 S(I) 也与旋称相关,上下颤动的幅度更大(可达 $10^3~{\rm keV}$),因而 $\Delta^2~E_r(I)$ 可以更清楚地反映出颤动的细节.

(4) 如何在集体模型的框架内合理地解释 ΔI = 1 颤动现象,本文作了初步的尝试。在选取了适当形式的相互作用后,根据实验数据定出了相应的耦合强度。就 ν [521]1/2⁻而言,耦合强度 $\kappa_3 \approx 10^{-4}$ -10^{-3} keV,不同原子核中强度不同,最大可相差一个量级。因此还难以得到任何定量的结论。而且应当指出,本文引进的剩余相互作用 κ_3 项,只相当于转动能中的"精细结构"。这种相互作用还只是唯象地引进的,一方面还值得进一步探求它的物理根源,另一方面也还需要考虑其它因素(例如肯定存在的带交叉)的影响。

- tures of Superdeformed Bands in ¹⁹⁴Hg []]. Phys Rev Lett, 1994, 72: 3 150-3 153.
- [6] 吴崇武、奇质量超形变带中的 ΔI=1 颤动[J]、高能物理与核 物理, 1997、21: 621-626.
- [7] Wu C S, Zhou Z N. ΔI=1 Staggering in Odd Superdeformed Nuclei [J]. Phys Rev. 1997, 56: 1 814-1 820.
- [8] 吴崇试. 奇奇核超形变带中的 $\Delta I = I$ 顫动[J]. 高能物理与核物理, 2000、**24**: 66-70.
- [9] Wu Chongshi, Li Zhonghua. $\Delta I = 1$ Staggering in Doubly Odd Superdeformed Nuclei [1]. Commun Theor Phys., 2000, 33: 307-404.
- [10] Firestone R B. Shirley V S. Baglin C M. et al. Table of Iso-

topes [M] New York: Wiley-Interscience, 1996, 8th edi-

tion.

$\Delta I = 1$ Staggering in Normally Deformed Band [521]1/2

WU Chong-shi, PAN Yi

(Department of Physics, Peking University, Beijing 100871, Chimas Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China)

Abstract: The $\Delta I = 1$ staggering phenomenon has been investigated systematically for the normally deformed bands in the odd-A rare-earth nuclei. By extracting the values of $\Delta^t E_t(I) = [E_t(I) + E_t(I-2)]/2 - E_t(I-1)$ from the transition energies in a pair of signature partner bands, regular signature- and spin-dependent zigzag patterns are explored in a series of the neutron $[521] \downarrow$ bands. The staggering amplitude varies with spin roughly as a parabola-like curve, the same as the behavior observed in the odd mass superdeformed nuclei. However, an appreciably non-vanishing amplitude is expected due to the decoupling effect in the $[521] \downarrow$ bands, which is different from the cases of the superdeformed bands. The decoupling terms are parametrised by the modified ab-fitting. Attempt is made to calculate the decoupling parameters (beyond the decoupling canstant) by taking into account the possible higher-order perturbation in the collective model hamiltonian.

Key words: normally deformed band; signature partner pairs; $\Delta I = 1$ staggering; decoupling effect; modified ab-expression

^{*} Foundation item: Foundation of Center of Theoretical Nuclear Physics. National Laboratory of Heavy Ion Accelerator of Lanzhou