文章编号:1007-4627(2002)02-0095-03

铍原子的能级和超精细结构的研究:

王 菲,苟秉聪,俞开智 (北京理工大学应用物理系,北京 100081)

摘 要:采用多组态相互作用方法及 Rayleigh-Ritz 变分法,并考虑相对论修正、质量极化效应等,获得了铍原子低激发态 1s²2s2p³P^o和 1s²2p² ³P 高精度的相对论能量.同时还计算了铍原子超精 细结构常数,与其他理论和实验结果符合得很好.

关键词: 铍原子; 低激发态; 超精细结构

中图分类号: O562.1 文献标识码: A

近年来,随着高分辨率束泊技术和原子束磁共 振技术的发展,以及许多理论方法[1-7]的广泛应 用,类铍四电子系统激发态的能级和超精细结构研 究越来越引起实验和理论工作者[1-8]的广泛关注. 铍原子是四电子的复杂原子系统,电子关联效应十 分复杂.这种系统的研究对发展多电子原子激发态 理论和阐明电子间的关联效应等具有重要学术意 义,并对等离子体理论、天体物理及核聚变等领域 均有重要应用价值. 众所周知,原子能级的超精细 结构,是原子中的电子和原子核的电磁多极矩之间 的相互作用引起的. 由于超精细结构的理论计算对 电子间的关联效应和相对论效应都十分敏感,因此 通过对原子能级超精细结构的研究可以对各种理论 方法作出严格的检验.近年来,国际上该研究领域 十分活跃,不断有新的进展.例如,Cheng 等^[1]首 先用 MCDF 方法计算了类铍离子激发态的能量, Jonsson 等^[2]采用 MCHF 方法报导了铍原子低激发 态的超精细结构数据等. 但是, 据我们所知, 四电 子系统的能级和超精细结构的实验和理论数据甚 少,有待进一步开展此项工作.

在 LS 表象中,四电子离子系统的基态波函数 可表示为

$$\Psi_{\mathbf{b}}(1,2,3,4) = A \sum_{i} C_{i} \phi_{n(i),l(i)} \cdot (R) Y_{l(i)}^{LM}(\Omega) X_{\mathfrak{S}z}, \quad (1)$$

基金项目:国家自然科学基金资助项目(10074006)

作者简介:王 非(1977一),男(汉族),陕西大荔人,博士研究生,从事原子结构和光谱理论研究.

式中 A 为反对称化算符. 径向部分波函数采用 Slater 型径向波函数展开. 为简便计,将角动量波 函数表示为: $l(i) = [(l_1, l_2)l_{12}, l_3]l_{123}, l_4$. 同样,自 旋波函数也可表示为 $X_{SS_2} = [(s_1, s_2)s_{12}, s_3]s_{123}, s_4$. 对于每个 l(i),均有一组不同的非线性参数集 a_j . 非相对论能量 E_b 由 Rayleigh—Ritz 变分法,对非线 性参数 a_j 以及线性参数 C 变分优化能量极小得到. 为了获得高精度波函数,我们进一步饱和束缚函数 空间,采用截断变分方法得到能量改进量 ΔE_{RV} ^[3], 总的非相对论能量为 $E_{nonrel} = E_b + \Delta E_{RV}$. 此外,我 们进一步考虑质量极化效应和相对论效应^[3],相对 论效应包括 P⁴项、Darwin 项、电子与电子相互作 用项和轨道与轨道相互作用项,获得了高精度的相 对论能量值.

对原子超精细结构的研究,通常关注的是超精 细结构的耦合及非耦合系数,在原子单位下,它们 分别为^[7]

$$\alpha_{c} = \langle LSLS \mid \sum_{i=1}^{N} 8\pi \delta^{3}(r_{i}) s_{0}(i) \mid LSLS \rangle,$$
(Fermi contact) (2)

$$\alpha_{sd} = \langle LSLS \mid \sum_{i=1}^{N} 2C_0^{(2)}(i) s_0(i) r_i^{-3} \mid LSLS \rangle,$$
(spin-dipolar) (3)

$$\alpha_{i} = \langle LSLS \mid \sum_{i=1}^{N} l_{0}(i) r_{i}^{-3} \mid LSLS \rangle,$$
(orbital) (4)

(5)

$$b_{q} = \langle LSLS \mid \sum_{i=1}^{N} 2C_{0}^{(2)}(i)r_{i}^{-3} \mid LSLS \rangle$$

(electric quadrupole)

和

$$A_{J} = \frac{\mu_{I}}{I} \frac{1}{\left[J(J+1)(2J+1)\right]^{1/2}} \cdot \langle \gamma J \parallel T^{(1)} \parallel \gamma J \rangle, \qquad (6)$$

$$A_{J-1,J} = \frac{\mu_I}{I} \frac{1}{[J(2J-1)(2J+1)]^{1/2}} \cdot (\gamma J - 1 \parallel T^{(1)} \parallel \gamma J \rangle,$$
(7)

$$B_{J} = 2Q \left[\frac{2J(J-1)}{(2J+1)(2J+2)(2J+3)} \right]^{1/2} \cdot \langle \gamma J \parallel T^{(2)} \parallel \gamma J \rangle,$$
(8)

这里 μι 是核磁矩.

铍原子是四电子复杂原子系统,各电子间关联 效应大.研究铍原子的能级和超精细结构,要求选 取质量最好的波函数. $1s^2 2s 2p^3 P^\circ$ 态是奇字称, 可能的重要角动量系列应是[$l_1 l_2 l_3 l_4$]:[00(l-1), l],[01 l,l],[11 l,l+1],[02 l+1,l+2],[12l+1,l+1],[12 l+1,l+3],[22 l+1,l+2]等. $1s^2 2p^2 {}^3 P$ 态是偶字称,可能的重要角动量系列应 是[$l_1 l_2 l_3 l_4$]:[00 l,l],[01 l,l+1],[11 l,l], [02 l+1,l+1],[11 l,l+2],[02 l+1,l+3]等. 对这两种情况,l的初始值为 1,最大值为 9,l>9 的由于能量贡献小于 0.5×10⁻⁷ atomic unit 而被忽 略,为确保所有重要的贡献都包含在本征波函数 中,我们进一步通过截断变分来饱和波函数空间. 对于每一组轨道角动量 l1, l2, l3和 l4, 都有几种耦 合方法以获得总轨道角动量,在铍原子1s²2s2p³P^o 和 1s²2p² 3P 态中,各种对能量有明显贡献的角动 量自旋耦合分波较多,我们的波函数含有线性参数 分别为 906 个和 891 个,角度自旋分波数分别为 48 个和 47 个. 从表 1 可以看出, 我们计算所得的相对 论能量值均比其它理论值更低更好, 比 Jonsson 等^[5]用 MCHF 方法计算的 1s²2s2p³P^o和 1s²2p²³P 态的能量值分别改进了 2 066 × 10⁻⁶ 和 1 163×10⁻⁶ atomic unit. 与实验值相比较, Safronova 等^[4] 使用 MBPT 方法得到的 1s²2s2p³P°和 1s² $2p^{2}$ ³ P 态的能量项值误差分别为 6.2% 和 2.6%; 而我们计算结果的误差仅分别为: 0.3%和0.4%, 与实验结果更为符合.结果表明,我们选取的波函 数有足够高的精确度. 在此基础上, 我们对铍原子 低激发态的超精细结构进行了研究,并与其它理论 及实验值进行了对比,超精细结构的非耦合系数和 耦合系数的计算结果列于表 2 和表 3 中. 由于要求 实验高分辨率,理论计算高精度,据我们所知,四 电子系统超精细结构数据仍很少,我们的计算结果 对将来的实验和理论工作将是有意义的.

	Eu	otal	T/cm^{-1}		
微反心	本工作	Jonsson ^[5]	本工作	Safronova ^[4]	实验值[4]
$1s^2 2s 2p^{-3} P^{\circ}$	-14 568 154	-14 566 088	22 044	20 613	21 981
$1s^2 2p^2 {}^3 P$	-14 395 399	-14 394 236	59 957	58 140	59 696

表 1 铍原子低激发态 1s²2s2p 3P^o和 1s²2p² 3P 的相对论能量 ×10⁻⁶ atomic unit

表 2	铍原子低激发态 1s ² 2s2p	³ P ^o 和 1s ² 2p ²	³P的超精细结构非耦合系数	(atomic unit)
-----	------------------------------	---	---------------	---------------

激发态	方法	α _c	α _{sd}	α,	<i>b</i> .,
$1s^2 2s 2p^3 P^0$	本工作	9.241 3	-0.065 18	0.301 80	-0.115 72
	MCHF ^[2]	9.241 6	-0.065 87	0.303 29	-0.115 70
	HF+SDCI ^[6]	9.273 8	-0.066 56	0.300 14	-0.1097
$1s^2 2p^{23}P$	本工作	-1.395 5	0.064 65	0.310 71	0.116 75

* ; ; ; ; Q=0.053 0 b=0.0530×10⁻²⁴ cm², $\mu_I = -1.177$ 492 nm, $I = 3/2^{[7]}$.

激发态	方法	A ₂ /MHz	A_1/MHz
1s ² 2s2p ³ P°	本工作	- 124. 349	-139.012
	MCHF ^[2]		-139.35
	HF+SDCI ^[6]	- 124.76	-139.77
	Experiment ^[8]	-124.536 8	-139.373
$1s^2 2p^2 {}^3 P$	本工作	338.083(-2)	179.230(-1)

表 3 铍原子低激发态 1s²2s2p³ P⁰和 1s²2p² ³P 的超精细结构耦合系数

参考文献:

- Cheng K T, Kim Y K, Desclaux J P. At Data Nucl Data Tables, 1979, 24, 111.
- [2] Jonsson P, Fischer C F. Large-scale Multiconfiguration Hartree-Fock Calculations of Hyperfine-interaction Constants for Low-lying States in Beryllium, Boron, and Carbon[J]. Phys Rev, 1993, A48(6): 4 113.
- [3] Chung K T, Gou B C. Energies and Lifetimes of Triply Excited States of Lithium[J]. Phys Rev, 1995, A52: 3 669.
- [4] Safronova M S, Johson W R, Safronova U I. Relativistic Many-body Calculations of the Energies of n=2 States for the Berylliumlike Isoelectronic Sequence[J]. Phys Rev, 1996, A53: 4 036.
- [5] Jonsson P, Fischer C F, Godefroid M R. MCHF Calculations

of Istope Shifts and Oscillator Strengths for Transtions between Low-lying States in Be-like Systems and Neutral Magnesium[J]. J Phys, 1999, **B32**: 1 233.

- [6] Beck D R, Nicolaides C A. Fine and Hyperfine Structure of the Two Lowest Bound States of Be and Their First Two Ionzation Thresholds[J]. Int J Quantum Chem Symp, 1984, 18: 467.
- [7] Yang H Y, Chung K T. Energy, Fine-structure and Hyperfine-structure Studies of the Core-excited States 1s2s2p² ⁵P and 1s2p³ ⁵S^o for Be-like Systems[J]. Phys Rev, 1995, A51: 3 621.
- [8] Blachman A G, Lurio A. Phys Rev, 1967, 153: 164.

Energy and Hyperfine Structure Studies of Excited State for Beryllium^{*}

WANG Fei, GOU Bing-cong, YU kai-zhi

(Department of Applied Physics, Beijing Institute of Technology, Beijing 100081, China)

Abstract: The Rayleigh-Ritz variational method is used with a multiconfiguration-interaction function and restricted variation method to obtain the relativistic energies of $1s^2 2s 2p$ ³ P° and $1s^2 2p^2$ ³ P in beryllium, including the mass polarization and relativistic corrections. Hyperfine structure is also studied to compared with theoretical and experiment data in the literature.

Key words: beryllium atom; low-lying excited state; hyperfine structure

Foundation item: National Natural Science Foundation of China (10074006)