文章编号: 1007-4627(2002)02-0290-05

$ZnS: Mn^{2+} 与 ZnS: Fe^{3+}$ 体系的基态零场分裂理论研究ⁱ

迭 东, 邝小渝, 鲁 伟

(四川大学物理学研究院, 原子与分子物理研究所, 四川 成都 610065)

摘 要:在 ZnS 晶体中掺入 Mn^{2+} 或 Fe^{3+} 离子的 EPR 谱已得到了广泛的研究.然而,理论结果显示其 EPR 零场分裂的计算值远小于实验观察值,这一理论与实验的矛盾至今仍未得到满意的解决.假定在四面体 ZnS 中,S原子在成键时采取了 sp^3 杂化轨道的形式,从而使 S离子显示出正的有效电荷.从这一观点出发,通过对角化三角场中的微扰能量矩阵,使得 ZnS: Mn^{2+} 和 ZnS: Fe^{3+} 体系的 EPR 零场分裂参量 α , D 和 (a-F)的实验值都能得到满意的解释.

关键词:光谱; EPR 谱; 基态零场分裂

中图分类号:O562.1 文献标识码:A

1 引言

ZnS 是一种共价化合物. 在其中掺入过渡金属 离子后,所形成的络合物具有许多特殊的物理性质 并具有广泛的潜在应用价值[1],如在激光、激光冷 却、光通讯、储存和纳米技术等方面.因此,从理 论上研究 ZnS 晶体内的电磁结构对认识 ZnS 的各 种特性具有十分重要的意义. 在过渡金属与 S 所形 成的络合物中,通常S离子被认为是处于氩原子态 的阴离子 S²⁻. 然而, 通过对 ZnS 中 Mn²⁺ 和 Fe³⁺ 的电子顺磁共振谱的研究,我们注意到如将 S 离子 作为有效电荷为负的阴离子处理,则 ZnS: Mn²⁺ 和 ZnS: Fe³⁺中的 EPR 立方零场分裂参量的理论 值仅约为实验值的二分之一. 最近, Zhou 等^[2]认为 掺杂离子的局域配位结构可能是一个 O_b 八面体结 构. 然而, Stavrev 等^[3]的研究结果表明, 在 ZnS: Mn²⁺ 中 Mn²⁺ 离子的局域配位结构仍然是 T_a四面 体结构. 根据已有的实验结果, 我们认为 Stavrev 等人的观点更为合理(即 ZnS: Mn²⁺ 与 ZnS: Fe³⁺ 体系中掺杂离子的局域配位结构仍然是 Ta四面体 结构). 我们假设在 ZnS: Mn²⁺ 与 ZnS: Fe³⁺ 体系 中S离子不是处于通常的氩原子态 S²⁻, 而是在形 成四面体 ZnS 时采取了 sp³杂化轨道的形式,形成 共价键并因此显示出正的有效电荷.我们的这一观 点将导致 d⁵电子组态在四面体场中具有正的配体

场参量 D_q,并由此对 ZnS: Mn²⁺和 ZnS: Fe³⁺体 系的 EPR 零场分裂的实验结果给出合理的理论解释.

2 理论分析

ZnS: Mn²⁺和 ZnS: Fe³⁺体系的 EPR 立方零 场分裂

根据电子顺磁共振理论, 描述 d^5 组态离子 $(Mn^{2+}, Fe^{3+})^{6}A_1$ 基态在立方配体场中的自旋哈密 顿算符为

$$\hat{H}_{s} = g\beta H \cdot S + \frac{1}{6}a[S_{\varepsilon}^{4} + S_{\eta}^{4} + S_{\varepsilon}^{4} - \frac{1}{5}S(S+1)(3S^{2}+3S-1)].$$
(1)

在外磁场为零时, ⁶A₁态将分裂成一个四重态和一 个二重态,其分裂值为 3a. 长期以来,从理论上计 算⁶A₁基态零场分裂参量 a 一直是一个困难的问题. 正如 Low 等^[4]在早期理论研究中所描述的那样: 理论值总是远小于实验观察值. 由于这一困难, Low 等人认为简单的晶场理论也许不适用解释 d⁵ 组态离子(Mn²⁺, Fe³⁺)⁶A₁基态的零场分裂. 1987 年为解决这一难题,应用如下的哈密顿量^[5]

$$\hat{H} = \sum_{i < j} \frac{e^2}{r_{ij}} + \zeta \sum_{i} l_i \cdot s_i + \sum_{i} V_i \qquad (2)$$

收稿日期: 2002 - 04 - 04;修改日期: 2002 - 05 - 07

 ^{*} 基金项目:国家自然科学基金资助项目(10074047)
 作者简介:迭 东(1975-),男(汉族),四川阆中人,在读硕士生,从事原子与分子折理研究.

对具有 C₃点群对称的晶体场,作者之一(邝小渝)在 d^5 电子组态内构造了两个 84 阶的微扰能量矩阵. (2)式中 ζ 是旋轨耦合系数, V_i是第 i 个电子与配体 间的相互作用势函数.通过具体的计算, 邝小渝等 人论证了六配位八面体系统(如 MgO : Mn²⁺ 和 MgO : Fe³⁺)的 EPR 立方参量 a 的理论困难可以 得到满意的解释,同时他们还指出了前人在理论工 作中的若干错误^[6].对八面体中 Mn²⁺和 Fe³⁺离子 基态零场分裂计算的成功,似乎意味着⁶A₁基态的 零场分裂理论困难已得到彻底的解决.然而,我们 进一步的研究表明在四面体的配体场中(如 ZnS : Mn²⁺和 ZnS : Fe³⁺),传统的配体场理论在解释基 态零场分裂时依然遇到很大的困难,通常理论结果 仅为实验值的一半.

在立方配体场中哈密顿量(2)式所对应的能量 矩阵的矩阵元是 Racah 参量 *B* 和 *C*、旋轨偶合系 数 5 和配体场参量 *D*。的函数.通常认为,在金属与 S 形成的络合物中, S 原子接受电子显负的有效电 荷,因此,按照配体场理论对于 *d*⁵电子组态离子在 四面体场中其配体场参量 *D*。将小于 0.

Pohl 等^[7]和 Kushida 等^[8]分别研究了 ZnS: Mn²⁺体系的光谱和光谱参量 *B*, *C*和 *D*_q. 将报道 的光谱参量值(*B*=405, *C*=3 437, *D*_q=-575.2 cm⁻¹和 *B*=630, *C*=3 040, *D*_q=-600 cm⁻¹)代人 能量矩阵,在旋轨耦合系数 ζ 的合理取值范围内(0 $< \zeta < \zeta_0, \zeta_0 = 347$ cm⁻¹),我们算得与 Zhou 等^[2]相 同的结果,即 EPR 立方零场分裂参量 *a*的计算值 远小于实验观察值 7.97×10⁻⁴ cm⁻¹(见图 1 曲线 I、 II). 对于 ZnS: Fe³⁺体系,虽然其光谱至今未见报 道,但我们可以采用 *D*_q=*f*(M)*g*(L)的近似关系来 估计其 *D*_q 值,其中 M 代表金属离子,L 代表配体 离子.由此我们得到

$$\frac{D_q(\text{ZnS}:\text{Fe}^{3+})}{D_q(\text{ZnS}:\text{Mn}^{2+})} = \frac{D_q(\text{MgO}:\text{Fe}^{3+})}{D_q(\text{MgO}:\text{Mn}^{2+})} , \quad (3)$$

把已知的 D_q (MgO: Fe³⁺)=1 316 cm⁻¹, D_q (MgO : Mn²⁺)=995 cm^{-1[9]}和 D_q (ZnS: Mn²⁺)=-600 cm^{-1[8]}代人上式,我们求得 D_q (ZnS: Fe³⁺)= -794 cm⁻¹. Fe³⁺离子在四面体 YGG 中的 Racah 参量 B = 650 cm⁻¹ 和 C = 2 400 cm⁻¹已由 Zhou 等^[10]从光谱分析中确定. 假定这些参数也适用于 ZnS: Fe³⁺体系,并将 B = 650 cm⁻¹, C = 2 400 cm^{-1} 和 $D_q(ZnS: Fe^{3+}) = -794 cm^{-1}$ 代人能量矩 阵,在旋轨耦合系数 ζ 的合理取值范围内 $(0 < \zeta < \zeta_0)$ = 470 cm⁻¹)进行计算,同样发现 *a* 的理论值远小 于观察值(见图 2 曲线 I).为了解决这一困难,我们 假定在四面体 ZnS 中的 S 离子采取了 *sp³*杂化形 式,由此导致 S 离子显示正的有效电荷,并使 *d⁵*电 子组态离子在 ZnS 中具有正的配体场参量 D_q .

图 1 ZnS: Mn²⁺体系的立方零场分裂参量 a 与旋轨耦合系 数 5 的关系曲线

I: B = 405, C = 3 437, $D_q = -575$. $2^{[7]}$; II: B = 630, C = 3 040, $D_q = -600$; III: B = 791, C = 2 740, $D_q = +600^{[2]}$; $\mathring{\Psi}$ $(\mathring{t} cm^{-1})$.

图 2 ZnS: Fe³⁺ 体系的立方零场分裂参量 a 与旋轨耦合系 数 5 的关系曲线

I: B=650, $C=2\ 400^{[10]}$, $D_q=-794$; II: B=650, $C=2\ 400$, $D_q=+794$; 单位 cm⁻¹.

对于 ZnS: Mn^{2+} 体系,我们将 Zhou 等^[2]确定 的光谱参量 B, C和D_q 值代人能量矩阵,通过对角 化能量矩阵的计算,得到 EPR 立方零场分裂参量 a 与旋轨耦合系数 ζ 的函数关系(见图 1 曲线 III)与 Zhou 等^[2]的结果相同. 当 ζ=343 cm⁻¹时, a 的理 论值 7.86×10⁻⁴ cm⁻¹与实验值 7.97×10⁻⁴ cm⁻¹ 相符. 尽管在计算中我们与 Zhou 等^[2]得出需要用 正的 D_q,才能合理的解释 ZnS: Mn²⁺体系 EPR 立

方零场分裂参量 a, 但是我们对正 D。的形成物理 机制的理解与 Zhou 等人的观点完全不同. Zhou 等 人认为 ZnS: Mn²⁺体系中正的 D_q 是源于六配位八 面体结构^[2]. 与其不同,我们认为在 ZnS: Mn²⁺体 系中 Mn²⁺离子的局域配位结构仍然是以 S 离子为 配体的四配位四面体结构, 而正的 D_a 是由于 S 在 形成 ZnS 结构时采取了 sp³ 杂化轨道的形式成键, 从而使 S 离子显正的有效电荷, 并导致 D。为正. 对于 ZnS: Fe³⁺ 体系,我们采用同样的观点,在计 算中对 D_a 取正值,用如下的参量 $B = 650 \text{ cm}^{-1}$,C =2 400 cm⁻¹和 D_a=794 cm⁻¹,并在 ζ 的合理取值 范围内重新计算 EPR 立方零场分裂参量 a 与く的 函数关系(见图 2 中曲线 II 所示). 类似的, 当 $\zeta =$ 449 cm⁻¹时,我们发现理论值 10⁴a=127.1 cm⁻¹与 实验值 10⁴ a = (127.4±5) cm⁻¹ 相符. 由此说明我 们的观点是合理的.

2.2 AS型ZnS:Mn²⁺,ZnS:Fe³⁺的EPR零场分裂

实验发现 ZnS 存在多种不同的晶型,其中 AS 型晶体是立方与六方 ZnS 的复合结构.光谱研究与 EPR 实验证实在 AS 型 ZnS 中,掺杂 Mn²⁺和 Fe³⁺ 的局域配位结构是以 S 为配体的四面体结构,且存 在沿[111]方向的畸变具有 C_{3v}对称. d⁵ ⁶ S 态离子 在三角晶场中的电子顺磁共振谱可以用如下自旋哈 密顿算符进行分析:

$$\hat{H}_{s} = g\beta H \cdot S + D[S_{z}^{2} - \frac{1}{3}S(S+1)] + \frac{1}{6}a[S_{z}^{4} + S_{z}^{4} + S_{z}^{4} - \frac{1}{5}S(S+1) \cdot (3S^{2} + 3S - 1)] + \frac{1}{180}F \cdot [35S_{z}^{4} - 30S(S+1)S_{z}^{2} + 25S_{z}^{1} - 6S(S+1) + 3S^{2}(2S+1)^{2}].$$
(4)

由(4)式可得出基态零场分裂能 ΔE_1 和 ΔE_2 与 EPR 参量 a, D和(a-F)的函数关系^[11]:

$$\Delta E_{1} = \pm \frac{1}{3} [(a - F + 18D)^{2} + 80a^{2}]^{\frac{1}{2}},$$

$$\Delta E_{2} = \frac{3}{2} (a - F) - D \pm \frac{1}{6} [(a - F + 18D)^{2} + 80a^{2}]^{\frac{1}{2}},$$
 (5)

其中"+"、"-"分别对应 D>0 和 D<0. ZnS: Mn²⁺和 ZnS: Fe³⁺的 EPR 零场分裂参量 a, D 和 (a-F) 已经分别由 Blanchard 等^[12]和 Buch 等^[13] 测得

$$10^{4}(a) = 7.35 \text{ cm}^{-1}, 10^{4}(D) = -130.9 \text{ cm}^{-1},$$

$$10^{4}(a - F) = 7.68 \text{ cm}^{-1}, \text{ZnS} : \text{Mn}^{2+};$$

$$10^{4}a = (127 \pm 5) \text{ cm}^{-1},$$

$$10^{4}D = (-479.9 \pm 5) \text{ cm}^{-1},$$

$$10^{4}(a - F) = (132.7 \pm 2) \text{ cm}^{-1},$$

$$\text{ZnS} : \text{Fe}^{3+}.$$

(6)

将这些数据分别带入公式(5)中,我们求得基态分 裂能为

$$10^{4} \Delta E_{1} = -783.1 \text{ cm}^{-1},$$

$$10^{4} \Delta E_{2} = -249 \text{ cm}^{-1},$$

$$ZnS : Mn^{2+};$$

$$10^{4} \Delta E_{1} = -2.860.3 \text{ cm}^{-1},$$

$$10^{4} \Delta E_{2} = -751.2 \text{ cm}^{-1},$$

$$ZnS : Fe^{3+}.$$

(7)

d⁵组态离子在三角场中的能量矩阵已由邝小渝求 得,其矩阵元中的三角配体场参量 D₂₀, D₄₀和 D₄₃ 具有下列形式^[14]:

$$D_{20} = 3 \left[\frac{1}{14} G(2) (3\cos^2 \theta_1 - 1) \right] + \frac{1}{14} G(2) (3\cos^2 \theta_2 - 1),$$

$$D_{40} = 3 \times \frac{1}{168} \times G(4) \times (35\cos^4 \theta_1 - 30\cos^2 \theta_1 + 3) + \frac{1}{168} \times G(4) \times (35\cos^4 \theta_2 - 30\cos^2 \theta_2 + 3),$$

$$D_{43} = 3 \times \frac{5}{12} \times G(4) \times \sin^3 \theta_1 \times \cos \theta_1 + \frac{5}{12} \times G(4) \times \sin^3 \theta_2 \times \cos \theta_2,$$
 (8)

其中 $\theta_1 = \cos^{-1}(\frac{1}{3}) + \Delta\theta(\Delta\theta$ 代表畸变角度, $\Delta\theta = 0$ 为正四面体), $\theta_2 = 180^\circ$, $G(4) = -(27/2) D_q$, G(2)/G(4) = 3.我们以 Mn^{2+} 和 Fe^{3+} 在正四面体 ZnS: Mn^{2+} 和ZnS: Fe^{3+} 中已确定的参量 B,C, D_q 和 ζ 为基础,用对角化矩阵的方法分别计算了 Mn^{2+} 和 Fe^{3+} 基态零场分裂能 ΔE_1 , ΔE_2 与畸变角 $\Delta\theta$ 的函数关系(见表 1).由表1可以看到,当 $\Delta\theta$ (ZnS: Mn^{2+})=0.80°和 $\Delta\theta$ (ZnS: Fe^{3+})=0.5164° 时,零场分裂能的理论值与实验观察值能很好地符 合. 我们将该零场分裂能 ΔE_1 , ΔE_2 和 EPR 立方零 场分裂参量 *a* 代人公式(5)中,从而得出 ZnS: Mn²⁺和 ZnS: Fe³⁺在三角场中的 EPR 零场分裂参 量 D 和(*a*-F)的理论值,结果如下:

$10^4 a = 7.68 \text{ cm}^{-1}$, $10^4 D = -130.97 \text{ cm}^{-1}$,
$10^4 (a - F) = 7.75 \text{ cm}^{-1}$, $\text{ZnS} : \text{Mn}^{2+}$;
$10^4 a = 127.1 \text{ cm}^{-1}$, $10^4 D = -479.5 \text{ cm}^{-1}$,
$10^4 (a - F) = 125.8 \text{ cm}^{-1}, \text{ZnS} : \text{Fe}^{3+}.$ (9)

表 1 零场分裂能 ΔE_1 , ΔE_2 与三角场参数 $\Delta \theta$ 的函数关系[•]

$ZnS: Mn^{2+}$			ZnS : Fe ³⁺		
$\Delta \theta / (^{\circ})$	$10^4 \Delta E_1$	$10^4 \Delta E_2$	$\Delta \theta / (\circ)$	$10^4 \Delta E_1$	$10^4 \Delta E_2$
0.70	-681.8	-215	0.500 0	-2 539.0	- 654.9
0.75	-732.7	-232.1	0.550 0	-2 800.8	742.2
0.80	-783.6	-249.2	0,561 4	-2860.0	-761.9
0.85	-835.1	-266.3	0.600 0	- 3 061.9	-829.0
0.90	886.3	-282.3	0.650 0	-3 326.0	-916.7
Expt.	-783.1	-249.2	Expt.	-2 860.3	-751.2
Ref.	[12]		Ref.	[13]	

* 其中($\Delta E_1 = E[{}^6A_1(\pm 5/2)] - E[{}^6A_1(\pm 1/2)], \Delta E_2 = E[{}^6A_1(\pm 3/2)] - E[{}^6A_1(\pm 1/2)], 单位为 cm^{-1}.$

可以看到理论值(9)式与实验值(6)式符合得很好. 从而进一步论证了我们的观点: ZnS 中 S 离子 采取了 *sp*³ 杂化的形式, 从而显正的有效电荷, 并导致配体场参量 *D*_g 为正.

ZnS: Fe³⁺体系在立方场和三角场中的 EPR 零场 分裂参量,则需要假定 ZnS 中的 S 离子具有正的有 效电荷. 这意味着在四面体 ZnS 中 S 在成键时采取 了 *sp*³ 杂化轨道的方式. 我们的这一结论与 Pauling^[15]的理论预测相一致.

3 结论

我们的研究表明要合理的解释 ZnS: Mn²⁺ 和

参考文 献:

- Chen W, Joly A G, Zhang J Z. Up-conversion Luminescence of Mn²⁺ in ZnS: Mn²⁺ Nanoparticles[J]. Phys Rev, 2001, B64: 041202.
- Zhou K W, Zhao S B, Ning Y M. Cubic Zero-field Splitting and Site Symmetry of Mn²⁺ in ZnS [J]. Phys Rev, 1991, B43: 3 712.
- [3] Stavrev K K, Nikolov G S. Comment on Cubic Zero-field Splitting and Site Symmetry of Mn²⁺ in ZnS[J]. Phys Rev, 1993, B47: 542.
- [4] Low W, Rosengarten G. The Optical Spectrum and Groundstate Splitting of Mn²⁺ and Fe³⁺ Ions in the Crystal Field of Cubic Symmetry[J]. J Mol Spec, 1964, 12, 319.
- [5] Kuang X Y. Analysis of Electron-paramagnetic Resonance for Fe³⁺ in Sapphire[J]. Phys Rev, 1987, B36: 712.
- [6] Kuang X Y, Chen Z H. Ground-state Zero-field Splitting for the Fe³⁺ Ion in a Cubic Field[J]. Phys Rev, 1987, B36: 797.

- [7] Pohl U W, Gumlich H E, Busse W. Zero-phonon Lines in the Excitation Band Centred at 23 200 cm⁻¹ due to Mn²⁺ in Polymorphic ZnS[J]. Phys Stat Sol, 1984, (b)125, 773.
- [8] Kushida T, Tanaka Y, Oka Y. Absorption Spectra of Optically Pumped ZnS : Mn[J]. J Phys Soc Jpn, 1974, 37: 1 341.
- Kuang X Y, Zhang W, Morgenstern-Badarau I. Analysis of Temperature-dependent Electron-paramagnetic-resonance Spectra for S-state Ions in MgO[J]. Phys Rev, 1992, B45: 8 104.
- [10] Zhou K W, Xie J K, Ning Y M, et al. Crystal-field Theory and the S-state Splitting of Fe³⁺ in Yttrium Gallium Garnet
 [J]. Phys Rev, 1991, B44: 7 499.
- [11] Abragam A, Bleaney B. Electron Paramagnetic Resonance of Transition Ions[M]. Oxford: Oxford Univ. Press, 1986.
- [12] Blanchard C, Parrot R, Boulanger D. Spin-lattice Coupling

Coefficients of a 3d⁵ Ion in Trigonal Symmetry: Study of Mn⁺⁺ in zinc sulfide[J]. Phys Rev, 1973, **B7**: 4 072.

- [13] Buch T, Clerjaud B, Lambert B, et al. Electron-paramagnetic-resonance Study of 3d⁵ Ions in Mixed-polytype Zinc Sulfide
 [J]. Phys Rev, 1973, B7: 184.
- [14] Kuang X Y. Champ de ligands et melange quantique des

niveaux d'energie electroniques de complexes de Fe(III)[J]. Ph. D Thesis (Univerite de Paris-Sud), 1994, 20.

[15] Marfunin A S. Physics of Minerals and Inorganic Materials
 [M]. Translated by N. G. Egorova and A. G. Mishchenko.
 Springer - Verlag, Berlin, Heidelberg, New York, 1979, 304.

Theoretical Study of Ground-state Zero-field Splitting for ZnS : Mn²⁺ and ZnS : Fe³⁺ Systems^{*}

DIE Dong, KUANG Xiao-yu, LU Wei

(Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

Abstract: The EPR spectra of Mn^{2+} and Fe^{3+} ions in $ZnS : Mn^{2+}$ and $ZnS : Fe^{3+}$ systems have been extensively studied. However, the theoretical results show that the calculation values of the zero-field splitting are always much less than those of the experimental findings. Up to now, this difficulty has not yet been satisfactorily removed. In present paper, we assume that the sulfur ion has a sp^3 hybrid configuration in tetrahedral ZnS, so that the sulfur ion displays a positive effective charge. From this view, by diagonalizing the perturbation energy matrices with trigonal symmetry ligand field, we find that the experimental EPR zero-field splitting parameters a, D, and (a-F) can be explained reasonably.

Key words: optical spectra; EPR spectra; ground-state splitting

^{*} Foundation item: National Natural Science Foundation of China (10074047)