文章编号:1007-4627(2009)03-0227-04

127°径向位置灵敏柱形静电离子能谱仪*

阮芳芳^{1,2},于得洋^{1,#},张明武^{1,2},王 伟^{1,2},陈 婧^{1,2},

邵曹杰¹,卢荣春¹,宋张勇¹,蔡晓红¹

(1中国科学院近代物理研究所,甘肃兰州 730000;

2 中国科学院研究生院,北京 100049)

 摘 要:针对高电荷态离子与表面作用产生的溅射离子能谱测量,研制了一台127°径向位置灵敏 柱形静电离子能谱仪。利用能量为800 keV的Ar⁸⁺离子轰击金属铍靶产生的溅射离子测试了本谱 仪。测试结果表明,该谱仪克服了传统静电谱仪通过扫描工作电压单能量点取谱的缺点,实现分段 取谱──在单个工作电压下可同时获取一段0.85E。<
 E<1.15E。范围的能谱,从而提高测量效率。
 关键词:同轴柱形静电离子能谱仪;径向位置灵敏;溅射离子能谱

中图分类号: TL817 文献标识码: A

1 引言

自从 1929 年 Hughes 和 Rojansky^[1] 指出静电 场方法也能分析带电粒子速度后,各式静电能谱仪 被广泛研发和应用。典型的静电能谱仪有以下 4 种 形式:127°柱形静电能谱仪^[1,2]、180°半球形静电能 谱仪^[3]、平行静电镜^[4,5]及同轴柱形静电镜^[6—9]。 传统静电谱仪获取能谱的方法均为通过变换扫描工 作电压(每个工作电压仅获取一个能量点)的方式累 积成谱,测量效率低。在离子束与表面相互作用中 产生的溅射离子的能量分布除了与离子的种类和能 量有关外,还依赖于离子束的入射角和观测角^[10]。 要获得包含以上参数的详尽离子能谱信息,采用传 统的逐点扫描方式取谱几乎是不可能的。正因如 此,目前有关高电荷态离子在固体表面诱发的溅射 离子能谱的可靠数据还很稀缺。

溅射离子能谱承载着极为重要的信息,对深入 理解低能高电荷态离子在固体表面的电离机制有着 极为关键的作用^[10]。鉴于此,我们设计了一台 127° 径向位置灵敏柱形静电离子能谱仪,通过改变内外 电极电压,可分段逐次获取离子能谱,实现对低能 溅射离子的全能谱测量。本工作给出了利用该谱仪 测量的 800 keV 的 Ar⁸⁺离子轰击金属铍靶产生的 溅射离子能谱。

2 工作原理及装置设计

2.1 谱仪的工作原理

当单色离子从垂直于电极径向面的正中心进入 同轴柱形静电场时,若针对离子速度给谱仪电极加 合适电压,则离子在偏转 $\pi/\sqrt{2}$ (约 127.3°)后将会 聚焦于同一径向位置。本工作用 C++编写程序, 计算了不同能荷比(E/q)、不同入射位置(限束光栏 的大小)、不同入射倾角(由两级准直光栏限定的角 度歧离)的离子,垂直于电极径向面进入柱形同轴 静电场后的运动轨迹,如图1所示。计算结果表明: (1)具有相同 E/q、从相同位置进入电场、但具有不 同倾角的离子在偏转 $\pi/\sqrt{2}$ 后聚焦相同的径向位置; (2)不同 E/q 的离子在偏转 $\pi/\sqrt{2}$ 后会各自聚焦在不 同的径向位置 R, R 与 E/q ——对应(见公式(2)); (3)能量为E的单色离子束通过宽度为 Δx 的狭缝 进入谱仪,在偏转 $\pi/\sqrt{2}$ 后,狭缝的像 $\Delta X'$ 与入射离 子能量及狭缝宽度 Δx 有如下关系: $\Delta x' = (E/E_c)$ Δx ,其中 *E*。为沿着谱仪中心圆形轨道运行的离子 的能量,以下简称为中心轨道能量。由于存在以上

* 基金项目: 国家自然科学基金资助项目(10775160)

通讯联系人:于得洋, E-mail: d. yu@impcas. ac. cn

^{*} **收稿日期**: 2008 - 11 - 07;修改日期: 2008 - 12 - 30

作者简介: 阮芳芳(1981-), 女(汉族), 浙江温州人, 博士, 从事原子物理研究; E-mail: ruanfang@impcas.ac.cn

离子轨道特征,谱仪的能量分辨主要取决于狭缝的 大小,而与离子的入射倾角几乎无关。

图 1 不同的能荷比 E/q、入射位置(入射狭缝宽度为 Δx)和
 入射倾角的离子进入柱形同轴静电场后的运动轨迹
 (a)和(b)分别为角坐标和极坐标中的运动轨迹。

据此,在距离入口光栏 127.3°和平行于径向面 处放置一个位置灵敏微通道板(MCP)探测器,获得 入射离子的位置谱,进而根据离子位置与能量的对 应关系式,就可得到离子的 *E*/*q*。

2.2 谱仪结构

该谱仪由同轴内外柱形电极、MCP 探测器、接 地引导管及屏蔽罩 4 部分组成,如图 2 所示。为确 保内外电极同轴,用两个具有同心定位槽的可加工 陶瓷底座对其进行上下固定,槽的内外径加工精度 为±0.02 mm。引导管接地,A 端靠近靶,B 端伸 进谱仪,其中轴线垂直于谱仪径向面,并与中心圆 轨道相切(用激光准直)。MCP 探测器平行于径向 面,安置在距引导管 B 端 127°的位置上。接地的不 锈钢屏蔽罩用于抑制干扰信号和屏蔽低能杂散离 子。为准确、便捷地调整束流与靶平面的夹角 θ 及 溅射离子同靶平面的夹角 β ,谱仪和靶架安装在一 个可调不锈钢平台上。调节好所需的几何参数后, 再将其置于真空腔体中。

谱仪主要部件尺寸为:外电极面半径 $R_o = 76$ mm,内电极面半径 $R_i = 50$ mm,中心圆轨道半径 $R_c = 63$ mm;内外电极高度 H = 60 mm,厚度 $\delta = 3$ mm; MCP 探测器的外形尺寸为 40 mm(长)×40 mm(宽)×15 mm(厚); 引导管长度 L=115 mm, 内径为 ϕ 3 mm; 其两端装有可拆卸光栏, 光栏孔径 尺寸可选择 ϕ 0.2, ϕ 0.5, ϕ 1 和 ϕ 2 mm。如前所述, 谱仪的能量分辨主要取决于狭缝的大小, 而与离子 的入射倾角几乎无关, 为获得高分辨的能谱并有尽 可能高的计数率, 一般取 ϕ A> ϕ B。

图 2 127°径向位置灵敏同轴柱形静电离子能谱仪示意图

内、外电极电压差 ΔU 与中心轨道能量 E_{\circ} 有以下关系:

$$\frac{E_{\rm c}}{q} = \frac{\Delta U}{R_{\rm c}} \ln \frac{R_{\rm i}}{R_{\rm o}} \,\,. \tag{1}$$

根据我们的模拟计算结果,对于本谱仪:

$$E_{c} = 1.194 \ q\Delta U ,$$

$$E = [1 + 0.0159(R - R_{c}) - 4.17 \times 10^{-5} (R - R_{c})^{2}]E_{c,c} \qquad (2)$$

为了减小接地引导管在谱仪内引起的电场畸变,需 保证谱仪的中心圆轨道出于地电位。因此,内、外 电极工作电压 U_i和 U_o须遵循以下关系

$$U_{\rm i} = \Delta U \, \frac{\ln(R_{\rm c}/R_{\rm i})}{\ln(R_{\rm o}/R_{\rm i})} \approx -0.552 \Delta U \,, \qquad (3)$$

$$U_{\circ} = \Delta U \frac{\ln(R_{\circ}/R_{\circ})}{\ln(R_{\circ}/R_{i})} \approx 0.448 \Delta U \quad . \tag{4}$$

在本工作中,入射离子为正离子;若要测量负 离子,内外电极和探测器电压均需反向。

2.3 位置灵敏 MCP 探测器

由于溅射离子能量较低(一般在几十 eV 到几 百 eV),而 MCP 对能量大于 3 keV 的离子才有接 近饱和的探测效率,所以必须设置一个加速电场, 首先将离子加速到足够高的能量再进行探测。另一 方面,如果简单地将 MCP 的探测面设置为负高压, 离子轰击产生的二次电子将大量逃逸到自由空间, 导致输出的信号幅度减小,信噪比降低。考虑到以 上两方面因素,探测器前端采用了两层网结构,构 造了两个平行静电场区域,可加速低能溅射离子并 抑制 MCP 表面二次电子的逃逸,见图 3。第一个区 域加速电场($\Delta U_1 = -3400$ V),由 NET I 与 NET II构成,间距 3 mm,正离子在经过该区域时被加 速。在本工作中,NET I 接地,NET II 加有 -3400V 高压。NET I 和 II 是中间开有 26 mm×8 mm 方 孔的镀金铜片,方孔上覆有一层金属网,由 ϕ 25 μ m 的镀金钨丝间隔 1 mm 构成。第二个区域抑制电场 ($\Delta U_2 = 400$ V),由 NET II 和 Electrode I 构成,间 距为 1 mm,主要作用是抑制二次电子逃逸。

图 3 MCP 探测器(剖视)示意图

电极片 Electrode I, Ⅱ和Ⅲ的厚度分别为 0.05, 0.2 和 0.2 mm; NET I和 Electrode I之间的偏压为-3400 V, NET Ⅱ和 Electrode I间的偏压为 400 V; Electrode I和 Electrode Ⅲ之间的偏压为-1800 V。

探测器主体由两片直径为 ϕ 33 mm、厚度为 0.47 mm 的圆形 MCP 片及条形阳极构成。阳极由 80 根 0.18 mm×8 mm×0.5 mm 的镀金铜条组成, 每两根铜条距离 0.12 mm,两两之间串有 10 kΩ 的 电阻(通过金属化孔焊在阳极板背面)。利用上述电 阻串,通过电荷分除方法可确定离子轰击的位置。 为提高电荷分除法的线性,在第 1 根和第 80 根铜 条与各自引出信号端之间各串入一个 150 kΩ 的电 阻。两路信号分别经由 ORTEC 142A 前置放大器 和 ORTEC 572 主放大器放大、成形后,通过 OR-TEC 533 双路加法器和 ORTEC 464 除法器,得到 位置信号。使用 WIENER CAMAC Crate Controller CC32 和 PHILLIPS 7164 CAMAC ADC 组成的 获取系统对位置信号进行采集。

3 谱仪测试及实验结果

在对径向位置灵敏 127°柱形离子能谱仪的测试

中,为了准确定位溅射离子偏转 127°后的位置,在 MCP 探测器前加了一片厚度为 0.2 mm 的接地条 形光栅,材料为铍青铜,每隔 1.8 mm 有一个宽度 为 0.2 mm 的狭缝。籍此,由位置谱上峰的排位次 序便可获知溅射离子的绝对位置,从而避免了由探 测器非线性引入的位置误差。进而通过公式(2)变 换即可得到相应的能谱。本谱仪不能区分相同 *E/q* 的离子,因绝大部分的溅射离子为+1 价离子,所 测能谱的离子能量是用+1 价标定得到的。

图 5 ΔU = 110 V 和能量为 800 keV 的 Ar⁸⁺ 离子轰击 Be
 靶产生的溅射离子段能谱

 (a) 溅射离子径向位置谱, (b) 溅射离子能谱。

利用中国科学院近代物理研究所 320 kV ECRIS高压平台提供的能量为 800 keV、流强为 180 nA 的 Ar⁸⁺离子束轰击 Be 靶产生的溅射离子, 对谱仪进行了测试。文中给出了一段典型的溅射离 子位置谱及由此转换得到的能谱,如图 5 所示。其 中,内外电极电压差 $\Delta U = 110 V(U_i = -60.7 V, U_o = 49.3 V), \theta = \beta = 45^\circ, \phi A = 1 mm, \phi B = 0.5 mm。根据关系式(3)和(4),逐次改变谱仪内外电$ $极工作电压(<math>\Delta U = 81, 110, 150, 200, 270, 370$ 和 500 V),通过拼接以上 7 段能谱(按最高峰值计数 归一),获得了 800 keV 的 Ar⁸⁺离子轰击 Be 靶产 生的溅射离子能谱,如图 6 所示。测试结果表明, 本谱仪在单个工作电压下可同时获取一段 0.85*E*。 《*E*《1.15*E*。范围的能谱,适用于高电荷态离子与 固体表面作用产生的溅射离子能谱测量。

图 6 能量为 800 keV 的 Ar⁸⁺离子轰击 Be 靶产生溅射离子 能谱

4 结论

针对溅射离子能谱测量,研制了一台 127°径向 位置灵敏柱形静电离子能谱仪。用能量为 800 keV 的 Ar⁸⁺离子轰击 Be 靶诱发的溅射离子,对本谱仪 进行测试。结果表明,该谱仪在工作电压下可同时 获取一段 0.85 $E_c \leq E \leq 1.15E_c$ 范围的能谱。与传统 的静电谱仪需要逐点扫描工作电压取谱相比,本谱 仪实现了分段取谱,具有更高的实验测量效率。

参考文献(References):

- [1] Hughes A L, Rojansky V. Phys Rev, 1929, 34: 284.
- [2] Arnow M M, Jones D R. Rev Sci Instr, 1972, 43: 72.
- [3] Purcell E M. Phys Rev, 1938, 54: 818.
- [4] Theodoridis G C, Paolini F R. Rev Sci Instr, 1969, 40: 621.
- [5] Decreau P, Prange R, Berthelier J J. Rev Sci Instr, 1975, 46: 995.
- [6] Sar-El H Z. Rev Sci Instr, 1967, 38 : 1210.
- [7] Hafner H, Simpson J A, Kuyatt C E. Rev Sci Instr, 1968, 39: 33.
- [8] Aksela S, Karras M, Pessa M, et al. Rev Sci Instr, 1970, 41: 351.
- [9] Sar-El H Z. Rev Sci Instr, 1971, 42: 1601.
- [10] Behrisch Rainer, Eckstein Wolfgang. Sputtering by Particle Bombardment-Experiments and Computer Calculations from Threshold to MeV Energies. Springer Berlin/Heidelberg, 2007.

A 127° Radial Position Sensitive Electrostatic Coaxial Cylindrical Spectrometer^{*}

RUAN Fang-fang^{1, 2}, YU De-yang^{1, #}, ZHANG Ming-wu^{1, 2}, WANG Wei^{1, 2}, CHEN Jing^{1, 2},

SHAO Cao-jie1, LU Rong-chun1, SONG Zhang-yong1, CAI Xiao-hong1

(1 Institue of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
 2 Graduate School of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: A 127° electrostatic coaxial cylindrical energy spectrometer with a radial position sensitive MCP detector is designed for sputtering ions measurement. It has been tested by measuring the energy spectrum of the sputtering ions in the collision of 800 keV Ar^{8+} bombarding beryllium target. A segment of the energy spectrum (0.85 $E_c \leqslant E \leqslant 1.15E_c$) can be obtained at one working voltage (U), which is much efficient than the traditional point-to-point voltage scanning method.

Key words: electrostatic coaxial cylinder spectrometer; radial position sensitive; sputtering ion energy spectrum

^{*} Received date: 7 Nov. 2008; Revised date: 30 Dec. 2008

^{*} Foundation item: National Natural Science Foundation of China(10775160)

[#] Corresponding author: Yu De-yang, E-mail: d. yu@impcas. ac. cn