文章编号:1007-4627(2009)04-0294-06

Breit 势的正规化与 η_{c} -J/ ψ 的劈裂^{*}

吉日木图

(哈尔滨工业大学物理系,黑龙江哈尔滨 150001)

摘 要:研究自旋和轨道量子数不同的介子之间的质量劈裂对检验夸克势模型非常重要。在以往的 夸克势模型计算中, η_c -J/ ψ 的质量劈裂都很难达到实验的值。用正规化形状因子 $\mu^2/(q^2 + \mu^2)$,在 对完整的动量空间中的 Breit 夸克势实施一次正规化下研究了 η_c -J/ ψ 和新介子 η_b 与 $\Upsilon(1s)$ 之间的 质量劈裂。结果表明,正规化形状因子中的屏蔽质量 μ 应与介子折合质量有关,当将其展开为介子 折合质量的三阶多项式时,上述介子质量劈裂可以精确重现实验的结果。另外,由于完整的 Breit 势包含有自旋-轨道耦合相互作用的项,因而还可以研究 χ_{c0} , χ_{c1} 和 χ_{c2} 之间的质量劈裂。

关键词:夸克势模型;矩阵元;介子束缚态;正规化;质量劈裂

中图分类号: O572.2 文献标识码: A

1 引言

在诸多描述强子内夸克运动的理论中,非相对 论性夸克势模型是一种简单而又非常有效的唯象模 型。这种夸克势模型认为强子中夸克的运动是非相 对论的,它可以用非相对论性薛定谔方程很好地描 述。尽管这种假定对轻夸克来说未尽合理,但非相 对论性的夸克势模型在对强子束缚态、精细结构和 散射的研究都取得了相当的成功,其理论计算结果 与实验数据符合得很好^[1-11]。这些成功促使人们对 非相对论性的夸克势模型进行更为广泛的研究。

完整的准确到光速二阶的单胶子交换势是 Fermi-Breit 势(或 Breit 势)^[7-10,12],它又被称作散射 道势或 t-道势。从前,人们用 Breit 夸克势模型研究 强子束缚态和散射问题时,为了简化计算总是通过 删去或改变 Breit 势中的一些项对散射道势进行改 进。特别是在这些改进中,都忽略了 Breit 势中与 动量有关的轨道-轨道耦合项^[2-6,11,13]。这样会导致 原来非定域的夸克势被定域化。对散射道势函数不 恰当的删改会破坏势函数应有的完整性和厄米性。 另外,在微观的强相互作用中,非定域性是一个不 可忽视的重要特征。因而,研究完整的包含有非定 域项的 Breit 夸克势模型,对于人们更深入地了解 和完善夸克势模型有重要的意义。 由于 Breit 势中包含有 r^{-3} 的奇异项,直接用 Breit 势^[12]计算介子束缚态时发现得到介子质量对 波函数基矢中的 π 介子宽度参量 β_{π} 和基矢的维数 N 的依赖性很大。当 β_{π} 或 N 略有改变时,计算的 结果变化很大。为了得到稳定的介子质量解,首先 要 消 除 Breit 势 的 奇 异 性。从 前 只 有 文 献 [2,11,13]在坐标空间中删改 Breit 势中的一些项 来消除奇异。本文用动量空间中的正规化形状因子 $\mu^2/(q^2 + \mu^2)$,对完整的 Breit 势中的奇异项进行一 次正规化处理。这样得到的势函数在坐标空间中不 再含 r^{-3} 的奇异项。结果表明,用本文的正规化方 法可以消除 Breit 势的奇异性,得到稳定和较高精 度的介子质量谱。从而给出稳定、有效的夸克势模 型。

用夸克势模型计算介子质量谱的工作中, η_{c} -J/ ψ , η_{b} - $\Upsilon(1s)$ 之间,还有 χ_{c0} - χ_{c1} - χ_{c2} 之间质量劈 裂是质量谱工作当中的难点。由计算结果可看到, π - ρ 很容易劈裂,而 η_{c} -J/ ψ 难劈裂。在目前常用的 耦合常数 α_{s} 的情况下,直接用 Breit 势,不能实现 这些介子之间的劈裂。要实现这些介子之间劈裂, 首先必须对 Breit 势实施正规化。当正规化形状因 子中的屏蔽质量 μ 为介子折合质量 $\mu_{r} = m_{i} m_{j} / (m_{i}$ + m_{j})的三阶多项式时,上述介子质量劈裂可以精

收稿日期: 2009 - 01 - 22;修改日期: 2009 - 07-06

作者简介: 吉日木图(1970-),男(蒙古族),内蒙古呼和浩特人,博士研究生,从事粒子物理与场论研究; E-mail:jrmt2003@yahoo.com.cn

确重现实验的结果。

Breit 势的正规化 2

我们对 Breit 势的正规化描述从动量空间开始。 Breit 势在动量空间中的形式是^[7-10]

$$V^{s}(\boldsymbol{p},\boldsymbol{q}) = C_{ij} \frac{4\pi\alpha_{s}}{q^{2}} \left\{ 1 - \frac{(m_{i}^{2} + m_{j}^{2})}{8m_{i}^{2}m_{j}^{2}} q^{2} + \frac{1}{m_{i}m_{j}} \left[\boldsymbol{p}^{2} - \frac{(\boldsymbol{p} \cdot \boldsymbol{q})^{2}}{q^{2}} \right] - \frac{2}{3} \frac{q^{2}}{4m_{i}m_{j}} (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) + \frac{1}{4m_{i}m_{j}} (\mathbf{i}\boldsymbol{q} \times \boldsymbol{p}) \left[\left(2 + \frac{m_{j}}{m_{i}} \right) \boldsymbol{\sigma}_{i} + \left(2 + \frac{m_{i}}{m_{j}} \right) \boldsymbol{\sigma}_{j} \right] + \frac{1}{4m_{i}m_{j}} \left[(\boldsymbol{q} \cdot \boldsymbol{\sigma}_{i}) (\boldsymbol{q} \cdot \boldsymbol{\sigma}_{j}) - \frac{1}{3} \boldsymbol{q}^{2} (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) \right] \right\} + C_{ij} (2\pi)^{3} (-V_{0}) \delta(\boldsymbol{q}) , \qquad (1)$$

其中, C_{ii} 是散射道色矩阵^[2], α_s 是 QCD 耦合常数, m_i 和 m_i 是夸克i和夸克j的组分质量, σ_i 是 Pauli 矩阵,最后一项是常数项势,用以求解薛定谔方程 时调整介子质量而加的^[2]。p和q的意义与文献[2] 相同, $p = \frac{1}{2} (\kappa' + \kappa)$, $q = \kappa' - \kappa$, 其中 $\kappa \approx 1$ 分 别是两个相互作用夸克*i*,*i*的初态相对动量和末态 相对动量。

下面为了兼顾精度和稳定度,除了库仑势和常 数项势外,对势函数(1)的其他项进行逐项一次正 规化,然后用傅立叶变换公式

$$V(\boldsymbol{r}) = \frac{1}{(2\pi)^3} \int d\boldsymbol{q} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} V(\boldsymbol{q})$$
 (2)

把它变换到坐标空间中去。正规化后的势函数的第 i项记为 U_i ,则有正规化一般公式为

$$U_{i}(\mathbf{p}, \mathbf{q}) = V_{i}(\mathbf{p}, \mathbf{q}) \frac{\mu^{2}}{q^{2} + \mu^{2}},$$
 (3)

其中 $\mu^2/(q^2+\mu^2)$ 是正规化形状因子。 μ 是可调参 量,对于我们这个势函数, μ 应该是折合质量 $\mu_r =$ $m_i m_i / (m_i + m_i)$ 的函数,这在结论中详细讨论。这 样便得到了 一个有效、稳定的夸克势模型在坐标空 间中的形式:

$$egin{aligned} U_{ij} = & C_{ij} lpha_{\,\mathrm{s}} \, rac{1}{r} \, - \ & C_{ij} \, (\,4 \pi lpha_{\,\mathrm{s}}) \, rac{(m_{i}{}^{\,2} + m_{j}{}^{\,2})}{8 m_{i}{}^{\,2} m_{j}{}^{\,2}} \left(rac{\mu^{2}}{4 \pi} \, rac{\mathrm{e}^{-\mu \, r}}{r}
ight) + \end{aligned}$$

$$\frac{C_{ij}\alpha_{s}}{2m_{i}m_{j}}\left(\frac{p^{2}}{r}+\frac{\boldsymbol{r}\cdot(\boldsymbol{r}\cdot\boldsymbol{p})\boldsymbol{p}}{r^{3}}\right)+ \frac{C_{ij}\alpha_{s}}{m_{i}m_{j}}\left(-e^{-\mu r}\left[\frac{p^{2}}{r}-\frac{\boldsymbol{r}\cdot(\boldsymbol{r}\cdot\boldsymbol{p})\boldsymbol{p}}{r^{3}}\right]+ \frac{\mu^{-2}r^{-2}\left[\frac{p^{2}}{r}-3\frac{\boldsymbol{r}\cdot(\boldsymbol{r}\cdot\boldsymbol{p})\boldsymbol{p}}{r^{3}}\right]- \frac{\mu^{-2}(\mu+r^{-1})\frac{e^{-\mu r}}{r}\left[\frac{p^{2}}{r}-3\frac{\boldsymbol{r}\cdot(\boldsymbol{r}\cdot\boldsymbol{p})\boldsymbol{p}}{r^{3}}\right]- \frac{C_{ij}\alpha_{s}}{3m_{i}m_{j}}(\boldsymbol{\sigma}_{i}\cdot\boldsymbol{\sigma}_{j})\left(\frac{\mu^{2}}{4\pi}\frac{e^{-\mu r}}{r}\right)- \frac{C_{ij}\alpha_{s}}{4m_{i}m_{j}r^{3}}\left\{1-(1+\mu r)e^{-\mu r}\right\}(\boldsymbol{L}\cdot\boldsymbol{\sigma})- \frac{3C_{ij}\alpha_{s}}{4m_{i}m_{j}r^{3}}\left\{1-(1+\mu r+\frac{1}{3}\mu^{2}r^{2})e^{-\mu r}\right\}S_{ij}^{x}+ C_{ij}(-V_{0})\cdot \cdot$$
(4)

其中, $\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p}$, $\boldsymbol{\sigma} = (2 + \frac{m_j}{m_i})\boldsymbol{\sigma}_i + (2 + \frac{m_i}{m_i})\boldsymbol{\sigma}_j$, $S_{ii}^r = (\boldsymbol{r} \cdot \boldsymbol{\sigma}_i)(\boldsymbol{r} \cdot \boldsymbol{\sigma}_i)/r^2 - (\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_i)/3$.

禁闭势采用线性禁闭势,并且不正规化:

$$U^{c}(\boldsymbol{r}) = V^{c}(\boldsymbol{r}) = -C_{ij}\left(\frac{3}{4}b\right) |\boldsymbol{r}| , \qquad (5)$$

这样总势函数为

$$U(\boldsymbol{r}) = U_{ij}(\boldsymbol{r}) + V^{c}(\boldsymbol{r}) \quad . \tag{6}$$

束缚态薛定谔本征方程和介子波函 3 数

对于一个介子的束缚态薛定谔本征方程,在坐 标空间中的形式如下,

$$\frac{p^2}{2\mu_r} \Phi(\boldsymbol{r}) + V(\boldsymbol{r}) \Phi(\boldsymbol{r}) = E \Phi(\boldsymbol{r}) , \qquad (7)$$

其中, $\mathbf{p} = (m_i \mathbf{p}_i - m_i \mathbf{p}_j / m_i + m_j)$, $\mu_r = m_i m_j / m_i + m_j$) $(m_i + m_i)$ 是相对动量和折合质量, $\Phi(\mathbf{r})$ 是介子波 函数。对于介子,有质量公式:

$$M = m_i + m_j + E , \qquad (8)$$

用基函数 $\phi_{nl}(\mathbf{r})$ 来展开 $\Phi(\mathbf{r})$, 即

$$\Phi(\boldsymbol{r}) = \sum_{n} a_{nl} \phi_{nl}(\boldsymbol{r}) , \qquad (9)$$

其中 $\phi_{nl}(\mathbf{r})$ 已含空间、自旋、色波函数。求解上面 的薛定谔方程,以便确定介子质量 M,那么必须先 给出此基函数 $\phi_{nl}(\mathbf{r})$ 在坐标空间中的解析表达式。 它应该满足介子角动量平方的本征态这一要求。

在不同的文献中所采用的形式不同,但一般都 取了谐振子波函数或稍加修改而得到。在这里采用 文献[2]中所采取的形式,在动量空间中给出:

$$\phi_{nl}(\boldsymbol{p}) = N_{nl}(2p)^{l} \sqrt{\frac{4 \pi}{(2l+1)!!}} Y_{lm}(\boldsymbol{\hat{p}}) \times \exp\left(-\frac{(2\boldsymbol{p})^{2}}{8n\beta^{2}}\right) \chi_{sm_{s}}c(i,j) \quad (10)$$

我们讨论的介子总角动量 J=0 和 J=1,所以上式 中轨道角动量量子数取值: l=0, 1, 2。脚标 n=1, 2, 3, ..., N,在具体的计算中取 N=6。 χ_{sm_s} , c(i, j)分别是介子自旋和色波函数。 N_{nl} 是归一化 常数。由归一化条件 $\int d^3 p |\phi_{nl}(\mathbf{p})|^2 = 1$ 定得:

$$N_{nl} = \left(\frac{1}{\pi n \beta^2}\right)^{3/4} \frac{1}{(2 \ n \beta^2)^{1/2}} \quad . \tag{11}$$

(10)式是动量空间中的形式,而求解坐标空间中的 薛定谔方程,则需要坐标空间中的基函数 ø_{nl}(r)。 因此用傅立叶变换公式,把动量空间中的基函数变 换到坐标空间中去,得到

$$\phi_{nl}(\boldsymbol{r}) = R_{nl}(r)Y_{lm_l}(\boldsymbol{\hat{r}})\chi_{sm_s}c(i, j)$$

$$= D_{nl}r^l \exp\left(-\frac{n\beta^2}{2}r^2\right)Y_{lm_l}(\boldsymbol{\hat{r}})\chi_{sm_s}c(i, j) ,$$
(12)

其中

$$D_{nl} = \frac{(\sqrt{2} i)^{l}}{4\pi} \sqrt{\frac{(2/\sqrt{\pi})^{3}}{(2l+1)!!}} (n\beta^{2})^{\frac{1}{2}(l+\frac{3}{2})} .$$
(13)

把 $\Phi(\mathbf{r}) = \sum_{n} a_{nl} \phi_{nl}(\mathbf{r})$ 代人上面的薛定谔方程,然 后左乘 $(2\pi)^3 \phi_{ml'}^*(\mathbf{r})$ 之后,对全空间积分:

$$\sum_{n} a_{nl} \left\{ (2\pi)^{3} \int d^{3}x \, \phi_{ml'}^{*}(\boldsymbol{r}) \frac{p^{2}}{2\mu_{r}} \phi_{nl}(\boldsymbol{r}) + (2\pi)^{3} \int d^{3}x \phi_{ml'}^{*}(\boldsymbol{r}) V(\boldsymbol{r}) \phi_{nl}(\boldsymbol{r}) \right\}$$
$$= E \sum_{n} a_{nl} (2\pi)^{3} \int d^{3}x \phi_{ml'}^{*}(\boldsymbol{r}) \phi_{nl}(\boldsymbol{r}) \quad (14)$$

在上式中定义:

$$T_{mn} = \langle ml' \mid \hat{T} \mid nl \rangle = \langle ml' \mid \frac{p^2}{2\mu_r} \mid nl \rangle$$
$$= (2\pi)^3 \int d^3x \phi_{ml'}^*(\mathbf{r}) \hat{T} \phi_{nl}(\mathbf{r}) , \quad (15)$$
$$B_{mn} = \langle ml' \mid nl \rangle$$

$$= (2\pi)^3 \int \mathrm{d}^3 x \boldsymbol{\phi}_{ml'}^*(\boldsymbol{r}) \boldsymbol{\phi}_{nl}(\boldsymbol{r}) , \qquad (16)$$

$$V_{mn} = \langle ml' | V | nl \rangle$$

= $(2\pi)^3 \int d^3x \phi_{ml'}^*(\mathbf{r}) V(\mathbf{r}) \phi_{nl}(\mathbf{r}) , \qquad (17)$

当势函数中有自旋和轨道耦合项时,计算矩阵元必须考虑耦合系数问题(C-G系数)。此时矩阵元公式 是普遍的:

$$V_{mn} = \sum_{m_l m_s} \sum_{m'_l m'_s} \langle lm_l sm_s | Jm_J \rangle \times \langle l'm'_l s'm'_s | J m'_J \rangle \times \langle 2\pi \rangle^3 \int d^3x \phi^{\dagger}_{ml'}(\mathbf{r}) \chi^{\dagger}_{sm'_s} c^{\dagger}(ij) \times V(\mathbf{r}) \phi_{nl}(\mathbf{r}) \chi_{sm_s} c(ij) , \qquad (18)$$

该式称为势函数在坐标空间中的矩阵元。当 *l'* = *l* 时,薛定谔方程(14)化为

$$\sum_{n} a_{nl} [T_{mn} + V_{mn}] = E \sum_{n} a_{nl} B_{mn}, \quad (19)$$

把它写成矩阵形式

$$Ha = EBa \quad , \tag{20}$$

其中 *a* 是展开系数。它是个 6×1 的列矩阵, 矩阵 *H* 的阶数为*N*。

$$a = (a_1, a_2, a_3, a_4, a_5, a_6)^{\dagger}$$
 (21)

4 正规化后的矩阵元

在计算矩阵元中用到了如下的积分,其中 erf(*x*)是误差函数,

$$\begin{split} w_{n} = & \int_{0}^{\infty} \mathrm{d}x \cdot x^{n} \, \mathrm{e}^{(-\nu x^{2} - \mu x)} \,, \, (n = 0, \, 1, \, 2, \, \dots) \,, \\ & w_{0} = \frac{1}{2} \sqrt{\frac{\pi}{\nu}} \, \mathrm{e}^{\frac{\mu^{2}}{4\nu}} \Big[1 - \mathrm{erf} \Big(\frac{\mu}{2\sqrt{\nu}} \Big) \Big] \,, \\ & w_{1} = \frac{1}{2\nu} (1 - \mu \, w_{0}) \,, \\ & w_{2} = \frac{1}{2\nu^{2}} \, \left[-\frac{\mu}{2} + \Big(\nu + \frac{\mu^{2}}{2} \Big) w_{0} \right] \,, \\ & w_{3} = \frac{1}{2\nu^{3}} \, \left[\nu + \frac{\nu^{2}}{4} - \Big(3\nu \, \frac{\mu}{2} + \frac{\mu^{3}}{4} \Big) w_{0} \right] \,, \\ & w_{4} = \frac{1}{4\nu^{4}} \, \left[-5\nu \, \frac{\mu}{2} - \frac{\mu^{3}}{4} + \right. \\ & \left(3\nu^{2} + 3\nu\mu^{2} + \frac{\mu^{4}}{4} \right) w_{0} \right] \,, \end{split}$$

$$w_{5} = \frac{1}{4\nu^{5}} \left[4\nu^{2} + 9\nu \frac{\mu^{2}}{4} + \frac{\mu^{4}}{8} - \left(15\nu^{2} \frac{\mu}{2} + 5\nu \frac{\mu^{3}}{2} + \frac{\mu^{5}}{8} \right) w_{0} \right] .$$
 (22)

在下面的矩阵元中出现的因子 *A_i* 和 ν 所取的表达 式如下:

$$\nu = \frac{1}{2}\beta^{2} (m+n) ,$$

$$A_{l} = \frac{2^{(l+2)}}{(2l+1)!! \sqrt{\pi}}\beta^{(2l+3)} (mn)^{\frac{1}{4}(2l+3)} . \quad (23)$$

因为计算的介子处于 *l*=0,1 状态,所以下面只给 出 *l*=0,1,并且 *l*'=*l* 时的矩阵元。方程(4)的第1 项势是库仑势 *U*₁,矩阵元为

$$(U_{1})_{mn} = (V_{1})_{mn} = C_{f} \frac{4\pi\alpha_{s}}{(2\pi)^{3/2}}\beta \times \frac{2^{l}l!}{(2l+1)!!} \sqrt{m+n}B_{mn} \,.$$
(24)

方程(4)的第2项势U2的矩阵元为

$$(U_{2})_{mn} = -C_{f}\alpha_{s} \frac{(m_{i}^{2} + m_{j}^{2})}{8m_{i}^{2}m_{j}^{2}} \times \mu^{2}A_{l}\{(1-l)w_{1} + lw_{3}\} , \qquad (25)$$

方程(4)的第3项势U₃是轨道与轨道耦合项,矩阵 元为

$$(U_{3})_{mn} = (V_{3})_{mn} + \left(-C_{f} \frac{\alpha_{s}}{4m_{i}m_{j}} 4\mu^{-2}\right) \times A_{l} \left\{-(n^{2}\beta^{4}) \frac{l!}{\nu^{(l+1)}} + (2n\beta^{2})l \frac{l!}{\nu^{l}}\right\} + \left(-C_{f} \frac{\alpha_{s}}{m_{i}m_{j}}\right) (2n\beta^{2})A_{l} \left\{(1-l)w_{1} + lw_{3} + \left(C_{f} \frac{\alpha_{s}}{2m_{i}m_{j}} 2\mu^{-1}\right) \left\{-(2n^{2}\beta^{4}) \times A_{l} \left[(1-l)w_{2} + lw_{4}\right] + (4n\beta^{2})A_{l} lw_{2}\right\} + \left(C_{f} \frac{\alpha_{s}}{4m_{i}m_{j}} 4\mu^{-2}\right) \left\{-(2n^{2}\beta^{4}) \times A_{l} \left[(1-l)w_{1} + lw_{3}\right] + (4n\beta^{2})A_{l} lw_{1}\right\},$$

$$(26)$$

其中

$$(V_{3})_{mn} = C_{\rm f} \frac{4\pi\alpha_{\rm s}}{m_{i}m_{j}}\beta^{3} \frac{2mn}{\sqrt{m+n}} \times \frac{B_{mn}}{(2\pi)^{3/2}} \frac{2^{l}(l+1)!}{(2l+1)!!} , \ l = 0, \ 1$$
(27)

方程(4)的第4项势 U_4 是自旋与自旋耦合项,矩阵 元为

$$(U_{4})_{mn} = -C_{f} \frac{\alpha_{s}}{6m_{i}m_{j}} 2[S(S+1) - 3/2] \times \mu^{2}A_{l} \{ (1-l)w_{1} + lw_{3} \} , \qquad (28)$$

方程(4)的第 5 项势 U_5 是自旋与轨道耦合项,矩阵 元为

$$(U_{5})_{mn} = C_{f} \frac{\sqrt{6} \alpha_{s}}{4m_{i}m_{j}} \left(4 + \frac{m_{i}}{m_{j}} + \frac{m_{j}}{m_{i}} \right) \times (\hat{S})^{2} \hat{l} \sqrt{l(l+1)} (-1)^{l} \times \left\{ (2\pi)^{3} \int d\mathbf{r} \phi_{ml}^{*}(\mathbf{r}) r^{-3} \phi_{nl}(\mathbf{r}) - A_{l} [w_{1} + \mu w_{2}] \right\} (-1)^{1+J} \times \left\{ \begin{cases} S & S & 1 \\ l & l & J \end{cases} \left\{ \begin{matrix} S & S & 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{matrix} \right\}, \quad (29)$$

方程(4)的第6项势U₆是张量力项,矩阵元为

$$(U_{6})_{mn} = C_{f} \frac{3\alpha_{s}}{m_{i}m_{j}} \sqrt{\frac{5}{6}} \delta_{s,1} (\hat{l})^{2} \times \begin{cases} l & l & 2\\ 0 & 0 & 0 \end{cases} (-1)^{J} \begin{cases} s & l & J\\ l & s & 2 \end{cases} \times \\ \begin{bmatrix} (2\pi)^{3} \int d\mathbf{r} \phi_{ml}^{*}(\mathbf{r}) r^{-3} \phi_{nl}(\mathbf{r}) - \\ A_{l}(w_{1} + \mu w_{2} + \frac{1}{3} \mu^{2} w_{3}) \end{bmatrix}, \quad (30)$$

其中积分项为

$$(2\pi)^{3} \int d\mathbf{r} \phi_{ml}^{*}(\mathbf{r}) r^{-3} \phi_{nl}(\mathbf{r}) = A_{l} \frac{1}{2} (l-1)!, \ \nu^{-l}, \qquad l > 0 \qquad (31)$$

常数项势矩阵元为

$$(V_7)_{mn} = C_f(-V_0)B_{mn},$$
 (32)

禁闭势矩阵元为

$$(V_{1}^{c})_{mn} = C_{f}\left(-\frac{3}{4}\right)\frac{b}{\beta}\frac{8\pi}{(2\pi)^{3/2}}\times \frac{2^{l}(l+1)!}{(2l+1)!!}\frac{B_{mn}}{\sqrt{m+n}}$$
(33)

这样便把修改后的矩阵元一一计算完毕。

5 讨论

最后求解一个介子束缚态薛定谔方程(20),即 Ha=EBa,要解出介子质量的数值解,以便来确定 其他附带参量的值。

经过计算,直接用 Breit 势或用正规化的 Breit 势, π 和 ρ 的劈裂是很容易实现,主要是 η_e 和 J/ ϕ 的劈裂难度大。人们采用的耦合常数 α_s 与空间坐标 无关,直接用 Breit 势无法实现 η_e 和 J/ ϕ 的劈裂。

要实现劈裂首先必须对 Breit 势实施修改或正 规化。经过本文的计算发现, η_c 和 J/ ψ 精确劈裂时 所需要的屏蔽质量 μ 值为 4.0 GeV 左右。如果对各 介子使用统一的常数 μ ,并使之达到 4.0 GeV 左右 时, π 和 ρ 发散,不允许这么做。因为 π 和 ρ 所需要 的 μ 值很小。所以使用统一常数 μ 无法实现劈裂。

对于夸克势模型,特别是 Breit 势,当轻介子、 重介子一起计算的时候,使 η_c 和 J/ ϕ 劈裂是个难 题。文献[15]采用不同于 Breit 势的夸克势模型, 使 η_c 和 J/ ϕ , χ_{c0} , χ_{c1} , χ_{c2} 之间劈裂过。但该文只算 了结构为 cc 的重介子。计算中无需兼顾轻介子问 题,此时很容易实现劈裂。

文献[16]中采用的势模型,其中的一项与

yukawa 势 $e^{-\mu r}/r$ 有关。在那里把 μ 取为与折合质 量 $\mu_r = m_i m_j / (m_i + m_j)$ 成正比。本文从这点出发, 认为 μ 是折合质量 μ_r 的函数。然后把它展开成多 项式,用逐级近似的方法,取到三阶多项式,就能 够实现这些介子的劈裂,从而给出了一个有效的、 稳定的夸克势模型。

$$\mu = c_0 + c_1 \mu_{\rm r} + c_2 \mu_{\rm r}^2 + c_3 \mu_{\rm r}^3 \,. \tag{34}$$

我们的势模型中可以调节的自由参量有弦张力 系数 b,常数项势 V₀和 5 种夸克质量 $m_u(m_u = m_d)$, m_s , m_c , m_b , 4 个展开系数 c_0 , c_1 , c_2 , c_3 。经 过计算,在我们的模型中 α_s 不再是可调参量了,而 采用文献[2]的耦合常数 $\alpha_s(Q^2) = (12\pi)/[(33 - 2n_f)\ln(A+Q^2/B^2)]$,其中 A=10, B=0.31 GeV。 波函数中的宽度系数 β 的取值,也采用文献[2]中 的 β 值。

为方便参考,表1列出了多个计算结果,其中 第1列数据 M(exp)是取自文献[2]的实验质量,第 2列 M^{th1} 和第3列 M^{th2} 是本文使用统一的常数 μ 和 使用多项式 μ 的计算结果。第4列是使用多项式 μ 计算的介子半径,第5列 $M^{[14]}$ 和第6列 $M^{[2]}$ 是理 论质量,第7列是文献[2]计算的介子半径。

meson	WI ^{mp} /Gev	M ^{and} / Ge v	M ^{th2} /GeV	$\sqrt{\langle r^2 \rangle} = /\mathrm{fm}$	$M^{\lfloor 14 \rfloor}/\text{GeV}$	M ^{L2} J/GeV	$\sqrt{\langle r^2 \rangle^{1/2}}/\mathrm{fm}$
$\pi(1^{1}S_{0})$	0.140	0.140	0.140	0.356	0.143	0.140	0.512
$K(1^{1}S_{0})$	0.494	0.498	0.493	0.405	0.494	0.495	0.521
$K^* (1 \ {}^3S_1)$	0.892	0.874	0.906	0.567	0.907	0.904	0.674
$\rho(1^{3}S_{1})$	0.770	0.774	0.771	0.613	0.788	0.774	0.769
$\phi(1^{3}S_{1})$	1.020	0.972	1.013	0.531	1.031	0.992	0.647
$b_1(1 \ ^1P_1)$	1.235	1.267	1.348	0.850	1.397	1.330	0.978
$a_1(1 \ {}^3P_1)$	1.260	1.234	1.315	0.841	1.573	1.353	0.993
$\phi(2^{3}S_{1})$	1.686	1.770	1.887	0.904	1.852	1.870	0.983
$D(1 \ {}^1S_0)$	1.869	1.983	2.034	0.547	1.865	1.913	0.585
$D^* (1 {}^3S_1)$	2.010	2.034	2.104	0.579	1.998	1.998	0.626
$D_s(1 \ {}^1S_0)$	1.969	2.040	2.050	0.450	1.976	2.000	0.508
${ m D}_{ m s}^{*}(1{}^{3}S_{1})$	2.112	2.088	2.145	0.498	2.121	2.072	0.546
$D_1(1 \ ^1P_1)$	2.422	2.499	2.628	0.787	2.408	2.506	0.840
$D_2(1 \ {}^3P_2)$	2.460	2.483	2.599	0.777	2.381	2.514	0.845
$\eta_{c}(1 \ {}^{1}S_{0})$	2.979	3.032	2.981	0.316	2.975	3.033	0.388
$J/\psi(1 \ {}^{3}S_{1})$	3.097	3.056	3.094	0.371	3.128	3.069	0.404
$h_{c}(1 \ ^{1}P_{1})$	3.570	3.456	3.525	0.549	3.520	3.462	0.602
$\chi_{c0} (1 \ {}^{3}P_{0})$	3.417	3.437	3.416	0.481	3.412		
$\chi_{c1}(1 \ ^{3}P_{1})$	3.511	3.453	3.505	0.537	3.505		
$\chi_{c2}(1^{-3}P_2)$	3.556	3.468	3.553	0.568	3.538		
$\psi'(2^{-3}S_1)$	3.686	3.673	3.754	0.639	3.689	3.693	0.666

表1 本文计算结果与实验值的比较*

$B(1 {}^{1}S_{0})$	5.279	5.371	5.425	0.558	5.272	5.322	0.574	
$B^* (1 \ {}^3S_1)$	5.324	5.382	5.441	0.564	5.319	5.342	0.583	
$B_s(1 \ {}^1S_0)$	5.369	5.411	5.445	0.482	5.368	5.379	0.503	
$B_{s}^{*}(1 \ {}^{3}S_{1})$	5.416	5.421	5.467	0.493	5.426	5.396	0.513	
$\eta_{\rm b}(1{}^1S_0)$	9.393	9.451	9.397	0.226				
$\Upsilon(1^{3}S_{1})$	9.460	9.455	9.430	0.239	9.453	9.495	0.255	
$\chi_{\rm b}(1\ {}^{3}P_{1})$	9.899	9.793	9.797	0.381	9.889	9.830	0.423	
$\Upsilon(2^{-3}S_1)$	10.020	9.908	9.940	0.482	10.023	9.944	0.519	
$\chi_{\rm b}(2^{-3}P_1)$	10.260	10.131	10.190	0.563	10.257	10.166	0.604	
$\Upsilon(3 \ {}^{3}S_{1})$	10.350	10.006	10.055	0.135	10.359	10.340	0.573	

* $M^{\text{th}1}$: $b=0.183 \text{ GeV}^2$, $V_{\text{con}}=-0.557 \text{ GeV}$, $m_u=0.395 \text{ GeV}$, $m_s=0.555 \text{ GeV}$, $m_c=1.730 \text{ GeV}$, $m_b=5.039 \text{ GeV}$, $\mu=0.752 \text{ GeV}$; $M^{\text{th}2}$: $b=0.235 \text{ GeV}^2$, $V_{\text{con}}=-0.663 \text{ GeV}$, $m_u=0.346 \text{ GeV}$, $m_s=0.563 \text{ GeV}$, $m_c=1.752 \text{ GeV}$, $m_b=5.047 \text{ GeV}$, $\mu=c_0$ + $c_1\mu_r+c_2\mu_r^2+c_3\mu_r^3$, $c_0=0.448 \text{ GeV}$, $c_1=-0.108$, $c_2=6.904 \text{ GeV}^{-1}$, $c_3=-2.256 \text{ GeV}^{-2}$.

参考文献(References):

- Lucha W, Schoberl F F, Gromes D. Phys Rep, 1991, 200: 127.
- [2] Wong C Y, Swanson E S, Barnes T. Phys Rev, 2001, C65 : 014903.
- [3] Godfrey S, Kokoski R. Phys Rev, 1991, D43: 1679.
- [4] Godfrey S, Isgur N. Phys Rev, 1985, **D32**: 189.
- [5] Godfrey S. Phys Rev, 1985, **D31**: 2375.
- [6] Capstick S, Isgur N. Phys Rev, 1986, **D34**: 2809.
- [7] Barnes T, Black N. Phys Rev, 1999, C60: 045202.
- [8] Chen J X, Su J C. Phys Rev, 2001, **C64**: 065201.

- [9] Wang H J, Yang H, Su J C. Phys Rev, 2003, C68: 055204.
- [10] Zhao G Q, Jing X G, Su J C. Phys Rev, 1998, **D58**: 117503.
- [11] Wong C Y, Swanson E S, Barnes T. Phys Rev, 2000, C62: 045201.
- [12] Rujula A D, Georgi H, Glashow S L. Phys Rev, 1975, D12 : 147.
- [13] Wong C Y. Phys Rev, 2004, **C69**: 055202.
- [14] Crater H, Vanalstine P. Phys Rev, 2004, D70: 034026.
- [15] Ebert D, Faustov R N. Phys Rev, 2000, D62: 034014.
- [16] Vijande J, Fernandez F, Valcarce A. J phys, 2005, G31: 481.

Regularization of Breit Potential and Splitting of η_c -J/ ψ^*

JIRIMUTU¹⁾

(Department of Physics, Harbin Institute of Technology, Harbin 150006, China)

Abstract: The study of the splittings between the masses of mesons with different spin and orbit quantum numbers is important for checking the quark potential model. In the previous calculations with quark potential models, the splitting between η_c and J/ψ is however too small to the experimental result. In this paper the mass splitting of η_c -J/ ψ and the splitting between the new meson η_b and $\Upsilon(1s)$ are investigated with the complete Breit quark potential regularized by applying the form factor $\mu^2/(q^2 + \mu^2)$ one time in momentum space. In addition, because the complete Breit potential includes the spin-orbit interaction, it can be used to investigate the splittings among χ_{c0} , χ_{c1} and χ_{c2} . The investigated results indicate that the screen mass μ in the form factor of regularization is related to the reduced mass of meson. The splittings of η_c -J/ ψ , η_b - Υ , and χ_{c0} - χ_{c1} - χ_{c2} can reproduce the experimental results with high accuracy when the screen mass is expanded to the third-order polynomial of meson reduced mass.

Key words: quark model; matrix element; meson bound state; regularized; masses splitting

^{*} Received date: 22 Jan. 2009; Revised date: 6 Jul. 2009

¹⁾ E-mail: jrmt2003@yahoo. com. cn