文章编号: 1007-4627(2011)04-0423-05

原子核基态双质子衰变的研究进展

徐树威,谢元祥

(中国科学院近代物理研究所,甘肃兰州 730000)

摘 要:基态双质子衰变是质子滴线区原子核的一种奇异衰变。它可以揭示质子滴线区原子核外层 质子对的结构行为,检验现有核模型理论应用于极端条件下原子核的正确性。搜索基态双质子衰变 是人们广泛关注的一个实验难题,直到理论预言提出后 40 多年才取得明显进展。简要介绍了这一 研究的进展情况。

关键词:基态双质子衰变;质子滴线; Bρ-TOF-ΔE方法;光学时间投影室

中图分类号: O571.32⁺4 文献标志码: A

1 物理意义和理论预言

如果核素非常远离β稳定线,其中子或质子的 结合能就会等于零,这就到达了核素图的极限部 位——中子滴线或质子滴线。就缺中子侧而言,处 在质子滴线部位的核素其质子的结合能等于零,质 子就该自动脱离原子核。但由于库仑位垒和离心位 垒的阻挡,即使质子的结合能为零,甚至为负值, 只要它的分离能(相当于负结合能)低于位垒高度, 质子要脱离原子核还必须穿透位垒。这个可观察的 质子穿透位垒的时间过程就是人们常说的直接质子 衰变过程。如果核素沿缺中子方向更加远离β稳定 线,其质子的分离能明显高于位垒,质子就会立即 脱离原子核。这样的核素就不复存在。因此,滴线 区是可存活原子核的边缘核区。合成与研究滴线区 的原子核,如观测质子滴线区原子核的直接质子衰 变和缓发质子衰变,是属于极端条件下物理学的范 時,成了原子核物理的一个前沿领域。到目前为止, 已经发现了 30 多种直接(单)质子衰变核素,它们 主要是在质子数=57~81 的区域内的奇 Z 核素。 观测到的质子分离能大多在 1.0~1.5 MeV 之间。 如果质子数低于 50,可观测的质子分离能有可能低 于 1 MeV。人们知道,质子的对能一般为 1~2 MeV,因此对于滴线区某些偶 Z 核素从基态同时发 射一对质子比通过单质子衰变更为有利。这种现象 被称为基态双质子衰变。观测基态双质子衰变可以 确定质子对所处的壳模型轨道,可以获得双质子穿 透位垒的信息,进一步检验原子核的质量预言和壳 模型在滴线区的正确性。

20世纪 60 年代初,前苏联科学家 Goldanskii 根据预言的原子核质量和结合能计算指出^[1]:邻近 质子滴线的外侧存在一种奇异的基态双质子衰变。 他还说,双质子既可以²He 的形式发射,也可以同

作者	预言核素的 $T_{1/2}/ms$					
	³⁸ Ti	³⁹ Ti	$^{45}\mathrm{Fe}$	⁴⁸ Ni		
Brown ^[3]		2~140	0.002~0.3	0.001~0.2		
$Ormand^{[4]}$	$(0.4 \sim 2.3) \times 10^{-12}$	0.4~2000	$10^{-5} \sim 10^{-1}$	0.01~3660		
$\operatorname{Audi}^{[5]}$	$2 \times 10^{-6} \sim 6$	\sim	$4 \times 10^{-4} \sim 10^{6}$			

表 1 不同理论预言的 2p 衰变的半衰期^{[5]*}

*用位垒穿透来确定半衰期时,采用 Audi & Wapstra 评估的质量,其结果列入第3行。

* 收稿日期: 2011-03-30;修改日期: 2011-05-03

基金项目: 国家自然科学基金资助项目(10735010)

作者简介: 徐树威(1938—), 男, 湖南长沙人, 研究员, 从事实验核物理研究; E-mail: xsw@impcas. ac. cn

时发射两个空间无关联的质子。1988年,他又进一 步指出²²Si,³¹Ar,³⁹Ti和⁴²Cr是可能的候选核^[2]。 后人的实验表明:前三者主要通过β衰变(包括β 缓发质子衰变),而没有观测到双质子衰变。于是 出现了新的理论预言^[3-4](见表1),候选核是³⁹Ti, ⁴⁵Fe,⁴⁸Ni和³⁸Ti。

2 德国 GSI 与法国 GANIL 的成功探索

合成滴线区核素的产额非常低,人们必须首先 设法合成这些候选核。1996年,Blank等^[5]在德国 重离子研究中心(GSI)用⁵⁸Ni 束流引起的炮弹碎裂 反应首次合成了3个⁴⁵Fe核,并估计其半衰期可能 长于穿越碎片分离器的飞行时间350 ns。但未能发 现⁴⁸Ni,也未能明确看到³⁸Ti。加之⁴⁵Fe的预言半衰 期适合于实验测量,于是人们的兴趣集中到了候选 核⁴⁵Fe。

2002年,Pfützner 等^[6] 发表了在 GSI 首次观测 到⁴⁵Fe 的双质子衰变的实验证据。从 SIS 同步加速 器引出 650 MeV/u 的⁵⁸Ni 束流轰击 4 g/cm²的 Be 靶,通过炮弹碎裂产生目标核。用碎片分离器 (FRS)把不同 $B\rho$ 值的碎片分开(见图 1)。用塑料闪 烁体(SC1, SC2 和 SC3)测量飞行时间(TOF),并 用一个四重电离室(MUSIC)测量能损(ΔE),根据 $BoTOF-\Delta E$ 方法的鉴别原理进一步指认了碎片的 质量数和电荷数。分离指认的同时碎片45 Fe 穿过几 个降能片(Degrader),速度逐渐减慢,最后进入探 测器系统。探测系统是由 8 块 Si 探测器组成的望远 镜。每片 Si 300 µm 厚, 直径 60 mm。望远镜被 6 块弧形 Nal 晶体包围。晶体长 30 cm, 其内外径分 别为8和40 cm。45 Fe 停止在硅片中,会产生能量 近1GeV的大信号。这就是时间的零点。此后,与 Si 探测器相连的一组前置放大器快速复原, 几微秒 之后 Si 探测系统就能跟踪能量低到 1 MeV 的衰变 质子信号。这个质子信号要与外围 Nal 信号反符 合,确认它与β衰变无关,而是直接质子衰变。经 过近 6 d 的实验, 他们最终观测到了 6 个45 Fe 的衰 变事件。只有5个事件观测到了衰变能量和时间。 其中 4 个事件是直接双质子衰变, 其衰变能为 1.1(1) MeV, 与理论预言值相近; 另一个事件相关 的衰变能为 10 MeV, 是来自β缓发质子衰变。45 Fe 的衰变半衰期确定为 3.6^{+2.6}_{-1.0} ms。直接双质子衰变 分支比估计为80%。

图 1 GSI 用于观测⁴⁵ Fe 双质子衰变的实验装置示意图^[6]

仅 5 d 后, Giovinazzo 等^[7] 在 *Phys. Rev. Lett.* 上发表了在法国重离子大加速器国家实验室 (GANIL)观测⁴⁵ Fe 直接双质子衰变的实验结果。 他们利用 75 MeV/u 的⁵⁸ Ni 束流轰击 240 μm 厚的 天然 Ni 靶,通过中能炮弹碎裂产生目标核。用 LISE3 对碎片按 *Bp* 值分离。采用类似的 *Bp* TOF-Δ*E* 方法把⁴⁵ Fe 碎片引入探测器系统。用 Si 探测器 来观测直接质子衰变。同时在其周围测量了 β 射 线,并通过反符合把与 β 衰变有关的事件与直接质 子衰变事件区分开来。经过 36 h,他们共计观测了 22 个⁴⁵ Fe 碎片注入到探测器系统。其中 12 个事件 的衰变能谱构成一个明显的峰,从而确定:双质子 衰变能为(1.14±0.04) MeV;⁴⁵Fe 的衰变半衰期 为4.7^{±3.4}/_{-1.4} ms。GANIL 的工作进一步深入。如 Dossat 等^[8]又报道了改进的结果:他们在GANIL观测 到 30 个注入碎片,其中 17 个与β衰变无关。由后 者的能谱定出精确的双质子衰变能为(1.154± 0.016) MeV;⁴⁵Fe 的衰变半衰期为 1.6^{±0.5}/_{-0.3} ms。他 们在同一文章中还报道:利用相同的弹靶组合,观 测到了 4 个⁴⁸ Ni 的注入碎片,提取的半衰期为 2.1^{±2.1}/_{-0.7} ms。但 4 个事件中只有一个具有双质子衰 变的特征,不与β射线符合,其衰变能量为1.35(2) MeV。这一个事件还不足以成为⁴⁸ Ni 存在β双质子 衰变的确凿证据。2005 年,Blank 等^[9]还在 *Phys*. *Rev. Lett.* 报道在 GANIL 观测到了⁵⁴ Zn 的直接双 质子衰变的实验结果。他们利用 74.5 MeV/u 的 ⁵⁸ Ni束流(平均流强为 4 μ A)轰击 250 μ g/cm² 的天 然 Ni 靶,通过中能炮弹碎裂产生目标核。利用测量 ⁴⁵ Fe的相同方法观测到 8 个注入的⁵⁴ Zn 碎片,定出 半衰期为 3. 2^{+1,8} ms;其中 7 个是直接质子衰变, 双质子衰变能为(1.48±0.02) MeV,并估计出核 反应生成截面约为100 fb。这个截面很低,与合成 Z=113~118 超重新元素的生成截面的数量级相 近。所幸中能炮弹碎裂反应可以采用比较厚的靶 子,每天还观测到了两个事件。上述 GANIL 和 GSI 的主要实验结果都列于表2。

表 2 GANIL 和 GSI 探索基态 β 双质子衰变的主要实验结果

母核	衰变能/MeV	半衰期/ms	分支比(%)	观测到的事件数	实验室
$^{45}\mathrm{Fe}$	1.1(1)	$3.6^{+2:6}_{-1:6}$	80	4	$\mathrm{GSI}^{[6]}$
$^{45}\mathrm{Fe}$	1.154(16)	1.6±8:3	57	17	GANIL ^[8]
^{4 8} Ni	1.35(2)	2. $1^{+2:1}_{-0:7}$	25	1	GANIL ^[8]
54 Zn	1.48(2)	$3.2^{\pm1}_{-0.8}$	86	7	GANIL ^[9]

3 实现双质子的关联测量及其重要副 产品

上述 GSI 和 GANIL 的实验并不完美,他们用 的 Si 探测器不能区分所测量的粒子是单质子还是 双质子。确认为双质子是基于物理分析。更为重要 的是,这种方法不能确定测得的是² He,还是同时 发射两个空间无关联的质子。只有实现两个质子的 关联测量,如观测它们的径迹才能回答这个问题。 为此,2007 年波兰的 Miernik 和 Dominik 等^[10] 研 制了针对核衰变成像的光学时间投影室(OTPC)。

图 2 光学时间投影室(OTPC)的示意图^[10]

OTPC(图 2)的工作原理如下:室内充有一个 气压的流动气体,成分是 Ar 和 He 各 49%, N₂和 CH₄各 1%。粒子及其衰变产物停止在 20 cm×20 cm×15 cm 的转换空间内。初始的电离电子以 1.1 cm/ μ s速度漂移,经两级放大,增益可大于 10⁴。在 电荷放大阶段发射的紫外光被波长移相器转化为可 见光,并被光电倍增管记录,同时还用一百万像素 的 CCD 数码相机拍照。照相产生的是一个两维的 图像,而光电倍增管的时间取样能给出不同时间与 两维图像垂直方向的信息。二者合一就形成了完整 的三维径迹图像。

Miernike 等^[11] 在美国密歇根州立大学(MSU) 超导回旋加速器实验室,利用 161 MeV/u 的⁵⁸ Ni 束流轰击 800 mg/cm²的天然 Ni 靶,通过中能炮弹 碎裂产生目标核。用 A1900 碎片分离器按 Bρ 值分 离核反应碎片。采用类似的 Bρ TOF-ΔE 方法把 ⁴⁵ Fe碎片引入到 OTPC 中拍照。经过 9 d 实验,他 们共计跟踪到 125 个⁴⁵ Fe 碎片,其中 87 个发生了 直接双质子衰变,38 个发生了 β缓发质子衰变。

图 3 给出了直接双质子衰变的照片。左边进入 的长而轻的径迹是⁴⁵Fe碎片,两条亮的短径迹就是 能量约为 0.6 MeV 的质子径迹,是碎片进入 535 µs 后发射出来的。根据他们的实验,⁴⁵Fe 的衰变半 衰期为 2.6(2) ms,直接双质子衰变的分支比为 70 (4)%。衰变过程中主要是同时发射两个空间无关 联的质子。发射的双质子主要处于 *f* 轨道,处于 *p* 轨道的几率约为 30(10)%。应当指出,在表 2 中有 关⁴⁵Fe 双质子衰变的半衰期和分支比,GSI 的结果 和 GANIL 的结果是有差别的。二者的平均值正好 与 Miernik 等人的结果相当。

利用上述实验装置, Miernik 等^[12]还得到了一 个重要的付产品,即首次看到了⁴⁵Fe的β缓发3质 子的径迹照片(图 4)。早在 1992 年 Bazin 等^[13] 曾报 道他们在 GANIL 观测到³¹ Ar 的 β 缓发 3 质子衰 变。这也是世界上首次报道 β 缓发 3 质子衰变的实 验结果。但 1999 年 Fynbo 等^[14]在 CERN 用更有效 的实验方法却没有观测到³¹ Ar 的 β 缓发 3 质子衰 变。而只是给出了³¹ Ar β 缓发 3 质子衰变分支比的 上限 1. 1×10⁻³。

图 3 用 OTPC 观测到的⁴⁵ Fe 双质子衰变的径迹照片^[11] 长径迹是⁴⁵ Fe 形成的,两条短粗径迹是双质子。

图 4 用 OTPC 观测到的¹⁵ Fe β 缓发 3 质子衰变的径迹照 片^[12]

长径迹是从左面入射的⁴⁵ Fe,其它 3 条径迹代表 β 衰变后产生的 3 个质子。

4 展望

根据法国 Blank 设想^[15],近期内可以探索邻近 核⁵⁹Ge,⁶³Se 和⁶⁷Kr 的基态双质子衰变。理论预言 的这 3 种核素的双质子衰变能在 1.15~1.85 MeV 的范围以内。但他担心这些核的β衰变分支比太强,使直接双质子衰变不易被实验观察。

研究基态双质子衰变的另一个核区应当是稀土 及邻近区域。相对轻核而言,这个区域的库仑位垒 高,更有利于实验观测(单)质子衰变和直接双质子 衰变。目前已经观测到的直接(单)质子衰变都集中 在这个区域。观测双质子衰变可以与邻近的单质子 衰变对比,便于从中获得系统的、更为灵敏的质子 滴线核结构信息。但实验面临的挑战是目标核的产 生几率要比⁴⁵Fe和⁵⁴Zn的更低。因为偶Z质子滴线 核要比奇Z质子滴线核更缺中子。如果采用低能熔 合蒸发反应来产生目标核,炮弹的流强一个粒子微 安,初步估计其计数率要比⁵⁴Zn的计数率至少低一 两个数量级。当然,要着手实验探索,首先必须对 目标核的衰变性质进行尽可能精确的理论预言。

参考文献(References):

- [1] Goldanskii V I. Nucl Phys, 1960, 19: 482.
- [2] Goldanskii V I. Phys Lett, 1988, **B212**: 11.
- [3] Brown B A. Phys Rev, 1991, C43: R1513.
- [4] Ormand W E. Phys Rev, 1996, C53: 214.
- [5] Blank B, Czajkowski S, Davi F, et al. Phys Rev Lett, 1996,
 77: 2983.
- [6] Pfützner M, Badura E, Bingham C, et al. Eur Phys J, 2002, A14: 279.
- [7] Giovinazzo J, Blank B, Chartier M, et al. Phys Rev Lett, 2002, 89: 102501.
- [8] Dossat C, Bey A, Blank B, et al. Phys Rev, 2005, C72: 054315.
- [9] Blank B, Bey A, Canchel G, et al. Phys Rev Lett, 2005, 94: 232501.
- [10] Miernik K, Dominika W, Czyrkowski H, et al. Nucl Instr and Meth, 2007, A581: 194.
- [11] Miernik K, Dominik W, Janas Z, et al. Phys Rev Lett, 2007, 99: 192501.
- [12] Miernik K, Dominik W, Janas Z, et al. Phys Rev, 2007, C76 : 041304(R).
- [13] Bazin D, Del Moral R, Dufour J P, et al. Phys Rev, 1992,C45: 69.
- [14] FynboH O U, Axelsson L, Äystö J, et al. Phys Rev, 1999,
 C59, 2275.
- [15] Blank B. Inter J Mod Phys, 2009, **E18**: 2124.

Recent Progress for Observation of Ground-state Two-proton Decay^{*}

XU Shu-wei¹⁾, XIE Yuan-xiang

(Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

Abstract: The ground-state two-proton decay is an exotic decay beyond proton drip line. It deals with the structure behavior of the proton pair at outside orbital in a proton drip-line nucleus, and can be used to check the current nuclear model under extreme condition. Experimental observation of ground-state two-proton decay has been widely considered as a challenge because of very low production cross section. In this short paper, the breakthrough of searching ground-state two-proton decay is briefly reviewed, which was made more than 40 years after the early theoretical prediction was proposed.

Key words: ground-state two-proton decay; proton drip line; $B\rho TOF - \Delta E$ method; optical time projection chamber

^{*} Received date: 31 Mar. 2011; Revised date: 3 May 2011

^{*} Foundation item: National Natural Science Foundation of China(10735010)

¹⁾ E-mail: xsw@impcas. ac. cn