文章编号: 1007-4627(2013)01-0067-05

250 keV He⁺ 离子注入钽酸锂改性研究

庞立龙^{1,2}, 王志光¹, 姚存峰¹, 崔明焕^{1,2}, 孙建荣¹, 申铁龙^{1,2}, 魏孔芳¹, 朱亚滨^{1,2}, 盛彦斌¹, 李远飞^{1,2}, 李锦钰¹

(1. 中国科学院近代物理研究所,甘肃 兰州 730000;2. 中国科学院大学,北京 100049)

摘要: 室温下,将能量为250 keV He⁺ 离子注入z 切钽酸锂单晶,注量范围为5.0×10¹⁴~5.0×10¹⁶ He⁺/cm²,应用三维轮廓仪、X 射线衍射(XRD)、紫外可见(UV-Vis)光学吸收谱对未注入和注入样品 进行了表征和分析。分析结果表明,在注量达到5.0×10¹⁶ He⁺/cm² 时,样品表面出现大量凸起条纹,同 时晶格沿着[001]方向出现明显肿胀,吸收边则表现出明显的注量相关性。注入样品在空气中放置60 d 后,最高注量的样品表面原来凸起的条纹变为细长的裂纹,晶格应变及光学吸收边均出现较大的恢复。讨论了样品表面形貌、晶格应变和光学吸收边与He 行为的关系。

关键词: 钽酸锂; He+注入; 表面形貌; X射线衍射; 光学吸收边

中图分类号: O77⁺4; O571.33 文献标志码: A DOI: 10.11804/NuclPhysRev.30.01.067

1 引言

近年来,He在固体中的行为引起了人们越来越 多的关注。He+离子注入后,在离子射程末端引入 了高密度的缺陷,导致局域的应变埋层形成,还可 能会导致材料肿胀、表面起泡甚至剥离等效应。目 前,与这种He行为相关的技术如智能剥离(smartcut)^[1-2]得到了迅速发展,此项技术将一定能量的 轻离子(H⁺或He⁺)注入到晶体中,经过刻蚀退火处 理,可以制备出层厚均匀、可控的高品质单晶薄膜, 目前,在许多半导体及复合氧化物(如铁电、压电 晶体材料)中已成功实现了智能剥离^[1,3-5],并在微 电子学领域制备高性能的电子器件方面得到了广泛 应用。为进一步认识He在材料中的行为以及He对 材料结构的影响,人们已经开展了大量的研究[6-7], 较多的文献报道了He 注入铌酸锂中的效应。例如, Kling 等^[8]研究了 20 keV He⁺ 离子室温注入下铌酸锂 中的缺陷演化和特征,发现了材料中He 泡的形成及 损伤程度的变化与退火温度的依赖关系。在高注量

情况下,在铌酸锂中大量的He在孪晶处累积,导致产生的位错沿着孪晶滑移并出现堆积,并出现网状缺陷^[9]。Ofan等^[10]通过弹性理论计算揭示了铌酸锂中纳米He泡特征尺寸。Roth等^[11]研究了不同能量下He 注入导致铌酸锂成分和结构的改变,观察到了晶格的 无序、He泡的形成以及Li的耗尽。

钽酸锂(LiTaO₃)与铌酸锂结构类似,是一种铁电 和压电晶体,因其具有优良的非线性光学特性和光电 特性,在制作电光和声光器件方面具有重要的应用。 目前已经用He⁺离子注入LiTaO₃成功地制备出了光 波导^[12],但却对He注入LiTaO₃的结构改性见报道甚 少。He注入LiTaO₃在材料内可能形成的He泡,引入 的缺陷以及产生的应力都会对其结构产生影响,这会 影响到光波导制备及高品质薄膜的形成。

本工作利用 250 keV He⁺离子注入 z 切LiTaO₃晶体,并利用三维轮廓仪、X 射线衍射(XRD)、紫外可见光(UV-Vis)吸收谱等手段研究了 He 注入对晶体表面形貌、内应力和吸收边的影响,探讨了 He 在材料

收稿日期: 2012-03-26 修改日期: 2012-04-20

基金项目:国家自然科学基金资助项目(10835010);国家重大基础研究发展计划项目(973计划)(2010CB832902) 作者简介:庞立龙(1982-),男,山东日照人,博士研究生,从事固体材料辐照效应研究; E-mail: panglilong@impcas.ac.cn 通信作者: 王志光; E-mail: zhgwang@impcas.ac.cn

中的行为,并对样品表面形貌、晶格应变和光学吸收 边与He行为的关系进行了讨论。

2 实验

实验选用光学级 z 切 LiTaO₃ 单晶样品,样品尺寸 为 10 mm×10 mm×1 mm,室温 He⁺离子注入实验是 在中国科学院近代物理研究所 320 kV 高压平台上完 成的,入射离子能量为 250 keV,注量为 5.0×10¹⁴, 5.0×10¹⁵和 5.0×10¹⁶ He⁺/cm²。为保证离子束流均 匀注入,在束流线上安装了扫描装置。注入后, 用 Micro XAM-3D 表面轮廓仪对样品进行了表面形貌 分析;用 PerkinElmer Lambda 900 UV/VIS/NIR Spectrometer 进行了吸收谱的测试,测试过程中非偏振光 垂直入射样品表面,测试范围 500~265 nm,扫描步长 为 0.08 nm;用 BROCK D8-ADVANCE X 射线衍射仪 对样品晶格应变进行了分析,分析过程中光学衍射面 平行于样品的(001)面,扫描方式为 $\theta/2\theta$,扫描步长 为 0.002°,数据分析中用 JADE 程序将 Cu *Ka*² 衍射峰 扣除。样品置于空气中 60 d 后,再次进行了分析。

3 结果和讨论

3.1 表面形貌分析

图 1 (a)给出了注量为 5.0×10¹⁶ He^{+/}cm²的LiTaO₃ 样品表面的三维形貌和沿 x 轴的样品表面突起高度 图 1(b)。由于低注量的样品表面形貌几乎未发生 变化,因此本文未给出其相应的形貌图。当注量达 到 5.0×10¹⁶ He^{+/}cm² 时,样品表面突然出现大量凸 起的条纹,凸起高度约十几个 nm,这些条纹主要沿 着 3 个方向,相互交错成三角形,Ofan等^[9]在铌酸 锂中也曾发现这种现象,并给出了这类凸起条纹在 不同的注入深度下开始出现时相对应的阈值注量。 我们用 SRIM2008 程序^[13]模拟了在注量为 5.0×10¹⁶ He^{+/}cm² 时的 He⁺离子在样品中的浓度分布,发现其 峰值浓度约 1.59 atoms%。样品在空气中放置 60 d 后, 只有高注量的样品表面形貌发生了变化(见图 1 (c))。 样品表面原来凸起的条纹已经开裂,开裂深度由几 + nm 到几百 nm 不等(见图 1 (d))。

高注量样品表面出现的条纹对应于材料内部的一

图 1 注量为 5.0×10¹⁶ He⁺/cm² 的 LiTaO₃ 样品表面形貌

(a) 注入后样品表面三维形貌图; (b) 沿(a) 图中直线样品表面高度变化图; (c) 注入 60 d 后样品表面三维形貌图; (d) 沿(c) 图中直线样品表面高度变化图。

种面缺陷^[9],反映了材料中三角形的电畴结构。在铁 电晶体中,电畴是一种基本的特征结构。一般来说, 晶体中理想的畴结构大约有一到两个晶格的宽度,但 在实际晶体中,由于受到材料其他性能的影响,其畴 结构往往扩展到微米量级^[14]。由于注入过程中产生的 点缺陷及He间隙子具有较高的迁移性^[15],而畴界作 为一种孪晶结构成为缺陷的一类俘获中心,大量的He 间隙子在此处累积,导致产生的位错沿着孪晶滑移、 堆积^[9]。因此畴界处局域应力增大,当这些缺陷累积 到一定浓度时,在平行于畴壁方向上出现较大的塑性 形变,即凸起的条纹。

经过60 d 的驰豫,更多的 He 间隙子可能在畴界 处被俘获,导致其附近局域应力进一步增加。特别是 在最高注量的样品中,由于晶体内 He 浓度较高,凸 起的条纹发生破裂,并伴随着一部分 He 的释放。

3.2 XRD分析

图2给出了未注入和注入LiTaO₃样品的XRD谱。 从图2(a)中可以看出,低注量样品的XRD谱未发 生明显变化,但当注量达到5.0×10¹⁶ He⁺/cm²时, 在(001)面衍射主峰的小角度方向上出现了新的衍 射峰,其中在37.5°附近的衍射峰在一定角度范围内 出现了明显的展宽,这表明晶格结构沿着[001]方向 发生了明显的肿胀。需要指出的是,由于X射线在材 料中的穿透深度已经超过了样品的注入层,因此,即 使在最高注量的样品中,来自于基底的主衍射峰仍然 非常强。

图 2 未注入和注入LiTaO₃样品的XRD 谱 (a)和(b)分别为注入后及60 d 后的样品的XRD 谱。

在空气中放置60 d 后,最高注量5.0×10¹⁶ He⁺/cm²样品的XRD衍射谱出现了明显的变化,原 来靠近主峰的新衍射峰消失了,而且,原来在37.5° 附近的强衍射峰已变为非常弱的小峰,其衍射峰的位 置也向高角度方向移动(如图2(b)),表明注入导致 的晶格肿胀已经出现了恢复。

在离子注入靶材的过程中,离子能量在材料中的 沉积会导致晶格原子发生离位,产生以空位和间隙子 缺陷为基础的各种缺陷。缺陷的存在破坏了晶格的有 序结构,使晶格发生畸变,产生应力,并导致晶格肿 胀。随着注量的增加,这种效应会逐渐明显,在XRD 谱中一般表现为衍射峰的减弱并向小角度方向移动, 或在主峰的小角度方向上出现新的衍射峰^[16-17]。此 外,这种由于原子间相互碰撞导致的移位损伤而引起 的晶格肿胀,很难在室温条件下发生大幅度的恢复。 根据上述实验结果,考虑到此时样品表面出现大面积 开裂的现象,推理出晶体中应变恢复与He 行为密切 相关。

在注入过程中,大量的 He 及其它缺陷在畴界处 被俘获,导致畴界处局域应力远远大于其它地方的应 力,这相当于在材料内部垂直于[001]方向施加一个 压应力,使得畴界附近的晶格结构沿着[001]方向出 现应变,即晶格肿胀。在低注量下,这种效应不是很 明显。但当注量达到 5.0×10¹⁶ He⁺/cm² 时,由于较高 浓度的缺陷和 He 间隙子累积,导致晶格发生明显的 肿胀,并在 XRD 谱中出现新的衍射峰。经过 60 d 的 弛豫, He 通过表面的裂纹释放,同时伴随着畴界处 应力的释放,导致材料中晶格应变迅速出现大幅的恢 复;但 XRD 谱中仍保留了独立的弱衍射峰,表明样 品内仍有残余的 He 及缺陷,因此,材料中应变并未 完全恢复。

3.3 吸收边分析

图3给出了未注入和注入LiTaO3样品的光学吸收 谱。He+离子注入后样品的吸收边均发生红移,尽管 其光学吸收边变化范围比较小,但仍然呈现出一定的 规律性;而且与XRD谱相比,吸收边变化对He+离 子注入更为敏感。为更加清楚地表征He+注入前后 样品吸收边的变化,图4给出了样品吸收边随注量的 变化关系及60d后的变化。可以看出,随着注量的 增加,吸收边红移呈现单调增加。在空气中放置60d

http://www.npr.ac.cn

后,所有样品均出现了吸收边红移的恢复,但是恢复 最明显的仍然是最高注量的样品。

图 3 未注入和注入LiTaO3 样品的光学吸收谱 (a)和(b)分别为注入后及60 d 后的样品的光学吸收谱。

图 4 He⁺ 注入LiTaO₃ 样品的吸收边随注量的变化 及 60 d 后的变化

LiTaO₃ 晶体的基本结构是由氧原子组成的八面体结构,它的吸收边是由氧的2*p*轨道电子向Ta⁵⁺的空5*d*轨道的跃迁能量所决定的。因此,配位氧的电子云分布变化将会影响到吸收边的位置。非化学计量比的LiTaO₃ 晶体,对Li含量的依赖非常明显,随着Li含量的减少,吸收边出现明显地红移^[18]。在Zn掺杂的LiTaO₃中,由于Zn取代了反位Ta,导致氧电子云

的极化减弱, 使得吸收边紫移。根据我们的 XRD 实 验结果,高注量样品的吸收边的变化表现出明显的应 力相关性。材料中应力的存在,会导致离子平衡位置 的移动,进而对电子跃迁能级产生扰动^[19-20]。根据 以上分析,He在畴界处的累积导致垂直[001]方向产 生的压应力, 使得畴界附近的晶格沿着晶轴受到拉伸 作用,而使晶格原子产生微小移位,对电子跃迁能级 产生扰动,使能级带宽降低,这相当于加剧了氧电子 云的极化,导致吸收边红移。注量越大,晶格应变越 大,极化越强,对晶格产生的微扰就越明显。因此,吸 收边红移就越大。60d后,由于部分缺陷的复合,也 导致吸收边红移的恢复,低注量样品吸收边红移微小 的恢复应主要与此有关。由于高注量样品中的He 释 放,导致部分应力释放和电子跃迁能级扰动的解除, 因此,氧电子云的极化就得到恢复,吸收边红移也随 之出现大幅恢复。

4 结论

应用三维轮廓仪、XRD和UV-Vis吸收光谱对室 温下 250 keV He⁺离子注入引起LiTaO₃晶体改性进行 了研究。研究结果表明,He⁺离子注入引起LiTaO₃晶 体表面形貌、应变和吸收边的变化与He 行为密切相 关。注入产生的缺陷及He 间隙子,容易在材料中电 畴结构的界面所俘获,导致畴界处发生较大的形变。 在注量达到 5.0×10¹⁶ He⁺/cm²时,样品表面出现与晶 体中畴结构相应的三角形凸起条纹,由此引起晶格沿 着[001]方向出现较大的应变。应力的存在对晶格结 构中电子跃迁能级产生微扰,导致晶体光学吸收边发 生红移。在空气中放置60 d 后,表面原来凸起的条纹 变为细长的裂纹,注入He 的释放使晶格应变和吸收 边红移出现较大的恢复。

参考文献(References):

- [1] BRUEL M. Nucl Instr and Meth B, 1996, **108**(3): 313.
- [2] TONG Q Y, GOSELE U M. Adv Mater, 1999, **11**(17): 1409.
- [3] RADU I, SZAFRANIAK I, SCHOLZ R, et al. Ferroelectric Thin Films Xi[M]. USA: Materials Research Society, 2003: 337–342.
- [4] LIU W, ZHAN D, MA X. J Vac Sci Technol B, 2008, 26(1): 206.
- [5] SIMPSON T W, MITC HE LL I V, ESTE G O, *et al.* Nucl Instr and Meth B, 1999, **148**(4): 381.

- [7] HARTMANN M, TRINKAUS H. Phys Rev Lett, 2002, 88(5): 055505.
- [8] KLING A, da SILVA M F, SOARES J C, *et al.* Nucl Instr and Meth B, 2001, **175**: 394.
- [9] OFAN A, GAATHON O, ZHANG L, et al. Phys Rev B, 2011, 83(6): 064104.
- [10] OFAN A, GAATHON O, ZHANG L, et al. Phys Rev B, 2010, 82(10): 104113.
- [11] ROTH R M, DJUKIC D, LEE Y S, et al. Appl Phys Lett, 2006, 89(11): 112906.
- [12] GLAVAS E, ZHANG L, CHANDLER P J, *et al.* Nucl Instr and Meth B, 1988, **32**(4): 45.
- [13] ZIEGLER J F. SRIM 2008 [EB/OL]. [2011-05-20]. http: //www.srim.org/.

- [14] GOPALAN V, DIEROLF V, SCRYMGEOUR D A. Annual Review of Materials Research. Palo Alto: Annual Reviews, 2007: 449–489.
- [15] TRINKAUS H. J Nucl Mater, 2003, **318**: 234.
- [16] JIA Xiujun, ZHANG Chonghong, ZHANG Liqing, *et al.* Nuclear Physics Review, 2011, **28**(3): 332 (in Chinese).
 (贾秀军, 张崇宏, 张丽卿, 等. 原子核物理评论, 2011, **28**(3): 332.)
- [17] ZANG Hang, WANG Zhiguang, WEI Kongfang, et al. Nuclear Physics Review, 2010, 27(1): 87 (in Chinese).
 (減航, 王志光, 魏孔芳, 等. 原子核物理评论, 2010, 27(1): 87.)
- [18] KIM I G, TAKEKAWA S, FURUKAWA Y, et al. J Cryst Growth, 2001, 229(4): 243.
- [19] SCHNATTERLY S E. Phys Rev, 1965, 140(4): A1364.
- [20] BALSLEV I. Phys Rev, 1966, **143**(2): 636.

Modification of Lithium Tantalate Implanted by 250 keV He-ions

PANG Li-long^{1, 2}, WANG Zhi-guang¹, YAO Cun-feng¹, CUI Ming-huan^{1, 2}, SUN Jian-rong¹, SHEN Tie-long^{1, 2},

WEI Kong-fang¹, ZHU Ya-bin^{1, 2}, SHENG Yan-bin¹, LI Yuan-fei^{1, 2}, LI Jin-yu¹

(1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The effects of 250 keV He⁺ implantation in the fluence from 5.0×10^{14} to 5.0×10^{16} He⁺/cm² on lithium tantalate at room temperature were investigated by 3D surface profiler, XRD and UV-Vis optical absorption spectroscopies. The experimental results show that a large number of raised stripes appear on the surface of the sample and the significant lattice swelling occurs along the direction [001] at the fluence of 5.0×10^{16} He⁺/cm². The dependence of changes absorption edge on the fluences was revealed. After the samples had been exposed to the air for 60 days, the raised stripes on the surface have evolved into narrow cracks. Furthermore, the lattice strain and the optical absorption edge has also recovered dramatically. The relationship between surface morphology, lattice strain, optical absorption edge and behavior of He-ions was discussed.

Key words: Lithium tantalate; He-ions implantation; surface morphology; XRD; optical absorption edge

http://www.npr.ac.cn

Received date: 26 Mar. 2012; Revised date: 20 Apr. 2012

Foundation item: National Natural Science Foundation of China (10835010); National Basic Reseach Program of China (973 Program)(2010CB832902)

Corresponding author: WANG Zhi-guang; E-mail: zhgwang@impcas.ac.cn