文章编号: 1007-4627(2016)04-0518-06

¹⁷³Lu 和 ^{174g}Lu 衰变数据的测量

师全林, 白涛, 刘杰, 商建波, 张小林, 代义华

(西北核技术研究所,西安 710024)

摘要: ¹⁷⁵Lu(n,2n)^{174m,g}Lu(n,2n)¹⁷³Lu反应在高能中子通量监测中具有重要作用,其产物的放射性活度通 常用HPGe探测器测量,这就需要^{174m,g}Lu和¹⁷³Lu的半衰期和γ射线发射率等衰变数据必须准确无误。在 主要的评价核数据库中,只有ENDF/B 7.1和 JEFF 3.1.1数据库给出了¹⁷³Lu和¹⁷⁴Lu的半衰期和γ射线的 发射几率等衰变数据,其中¹⁷³Lu的γ射线发射几率 ENDF/B 7.1库比 JEFF 3.1.1库总体偏高,其他评价 数据两个数据库非常一致。在中国原子能研究院的串列加速器上用 20 MeV 质子辐照金属 Yb 靶生产了含 有¹⁷³Lu,^{174m,g}Lu的放射性溶液,用激光共振电离质谱(LRIMS)和热表面电离质谱(TIMS)两种同位素稀 释法测定了该溶液中¹⁷³Lu和^{174m,g}Lu核素浓度,然后制备测量源在 HPGe 探测器上进行了近7年的跟踪 测量,发现¹⁷³Lu的半衰期为1.45 a,比目前评价的数据1.37 a 高 6.1%,636.1 keV γ射线发射几率的偏差 最大,比ENDF/B 7.1的评价数据偏高7%。^{174g}Lu半衰期的测量结果 3.37 a,比评价数据 3.31 a 高约1.8%, ^{174g}Lu 76.5 keV和1241.8 keV γ射线的发射几率比ENDF/B 7.1的评价数据分别低1.87%和12.8%。 **关键词:**¹⁷³Lu;¹⁷⁴Lu;半衰期;γ射线发射几率;HPGe

中图分类号: O571.32 文献标志码: A DOI: 10.11804/NuclPhysRev.33.04.518

1 引言

¹⁷³Lu 100% 以轨 道电子 俘获 (EC) 方式衰变到 ¹⁷³Yb。^{174m}Lu 以EC 和 $β^+$ 方式衰变到稳定的¹⁷⁴Yb 的分支比为0.62%,以内转换(IT) 方式衰变到 ^{174g}Lu 的分支比为99.38%,^{174g}Lu以EC 和 $β^+$ 方 式衰变到¹⁷⁴Yb。在主要的评价核数据库中,只 有ENDF/B 7.1和JEFF 3.1.1数据库给出了¹⁷³Lu, ^{174m}Lu和^{174g}Lu的衰变数据 (见表1)^[1],其中这3个 同位素的半衰期、^{174m}Lu和^{174g}Lu的γ射线发射几 率两个数据库非常一致,而¹⁷³Lu的γ射线发射几 率ENDF/B 7.1库比JEFF 3.1.1库总体偏高,有必要 对这些衰变数据进行准确的实验测量。

应用中得到的放射性镥样品,一般都含有¹⁷³Lu, ^{174m}Lu和^{174g}Lu等放射性同位素,难以通过放化分 离得到同位素纯的放射性溶液。同时,这些放射性 核素大多以轨道电子俘获方式进行衰变,用绝对 测量方法确定活度的难度较大。因此,在不利用 γ 射线发射几率等核参数的条件下测定放射性镥同 位素的活度是比较困难的。为此,研究了高元素选 择性的激光共振电离质谱(LRIMS)同位素稀释法测 定¹⁷³Lu和¹⁷⁴Lu核素含量的方法^[2-3],在中国原子 能研究院串列加速器上用20 MeV的质子辐照金属Yb 靶得到含¹⁷³Lu,^{174m}Lu和^{174g}Lu的放射性样品(总 活度约 2×10^7 Bq),用LRIMS 同位素稀释法(稀释 剂为¹⁷⁶Lu) 定量^[4]出¹⁷³Lu 和^{174m,g}Lu 核素浓度分别 为4.676×10¹¹/mg和1.092×10¹¹/mg,合成相对标准 不确定度分别为1.2%和1.3%。该结果同时得到TIMS 同位素稀释法的验证^[5],表明Yb对Lu的干扰可以 忽略。用该溶液制备了4个放射性测量源,在实验室 用HPGe 探测器进行了近7年的测量,给出了¹⁷³Lu和 ^{174g}Lu的半衰期和主要γ射线的发射几率等数据。

作者简介: 师全林(1971-), 男, 甘肃临洮人, 研究员, 博士, 从事核技术及应用研究; E-mail: Shiquanlin@nint.ac.cn。

收稿日期: 2016-06-02; 修改日期: 2016-08-24

第4期

				p_{γ}		
核素 半衰期		衰变方式	E_{γ}/keV	ENDF/B 7.1	JEFF 3.1.1	
			78.63	$11.87\%(1\pm 3.60\%)$	$11.16\%(1\pm12.1\%)$	
			100.724	$5.24\%(1\pm3.68\%)$	$4.36\%(1\pm12.2\%)$	
^{173}Lu	1.37 a (1+0.7%)	EC (100%)	171.393	$2.90\%(1\pm4.92\%)$	$2.81\%(1\pm13.9\%)$	
			179.365	$1.38\%(1\pm3.78\%)$	$1.19\%(1\pm12.0\%)$	
			272.105	$21.20\%(1\pm3.63\%)$	$18.00\%(1\pm11.1\%)$	
			636.11	$1.45\%(1\pm4.61\%)$	$1.31\%(1\pm14.7\%)$	
		IT (99.38%)	44.683	$12.43\%(1\pm3.10\%)$	$12.46\%(1\pm2.25\%)$	
			67.058	$7.25\%(1\pm2.99\%)$	7.27%(1±2.09%)	
174 -	=	$EC+\beta^+$ (0.62%)	76.468	$0.06\%(1\pm4.12\%)$	$0.06\%(1\pm3.96\%)$	
^{174m} Lu	$142 d (1 \pm 1.4\%)$		176.653	$0.47\%(1\pm4.04\%)$	$0.41\%(1\pm 6.69\%)$	
			272.914	$0.55\%(1\pm4.46\%)$	$0.51\%(1\pm5.35\%)$	
			992.077	$0.55\%(1\pm 3.85\%)$	$0.54\%(1\pm2.07\%)$	
			1 264.98	$0.02\%(1\pm8.27\%)$	$0.02\%(1\pm7.64\%)$	
			76.468	$5.93\%(1\pm4.77\%)$	$5.91\%(1\pm4.85\%)$	
$^{174\mathrm{g}}\mathrm{Lu}$	3.31 a $(1\pm 1.4\%)$	$EC+\beta^{+}$ (100%)	176.653	$0.01\%(1\pm5.01\%)$	$0.01\%(1\pm 5.22\%)$	
			1 241.847	$5.14\%(1\pm2.53\%)$	$5.14\%(1\pm2.93\%)$	

表 1 镥的主要γ射线及其发射几率

2 原理方法

镥的放射性溶液样品中含有¹⁷³Lu,^{174g}Lu和^{174m}Lu,用质谱法测定了单位质量样品中¹⁷³Lu和^{174m}Lu的核素数,称重制备了4个HPGeγ谱仪的测量 源,通过各放射性同位素特征γ射线的净峰面积的分析 确定各核素的半衰期和主要γ射线的发射几率。

从表1的数据可以看出, $^{174m}Lu 会 对 ^{173}Lu$ 的 272.1 keV, ^{174g}Lu 的76.5 keV和176.6 keV射线的分 析形成干扰。为此在样品中 $^{174m}Lu基本衰变殆尽后进行 了 <math>\gamma$ 能谱测量和分析。若用质谱计测得样品中的 ^{173}Lu 或 $^{174}Lu 原子数为 N_0$ (参考时间为 T_0),则其活度 A_0 为

$$A_0 = \lambda \cdot N_0 \quad , \tag{1}$$

式中 λ 为¹⁷³Lu或¹⁷⁴Lu的衰变常数。若在某时刻*T*将 该样品在HPGe探测器上测量,得到某条特征 γ 射线的 净峰面积为*S*,则存在如下关系:

$$A_0 \cdot p_{\gamma} \cdot \varepsilon = \frac{S}{t_{\rm L}} \cdot \frac{\lambda \cdot t_{\rm R}}{1 - \mathrm{e}^{-\lambda \cdot t_{\rm R}}} \cdot \mathrm{e}^{\lambda \cdot t} , \qquad (2)$$

式中 p_{γ} 为该条射线的发射几率; ε 为探测器对该射线的 绝对探测效率; $t_{\rm R}$ 和 $t_{\rm L}$ 分别为测量的时钟时间和活时 间; t为开测时刻T和参考时刻 T_0 之间的"冷却时间"。 该条 γ 射线的发射几率 p_{γ} 为

$$p_{\gamma} = \frac{S}{t_{\rm L} \cdot \varepsilon} \cdot \frac{t_{\rm R}}{1 - {\rm e}^{-\lambda \cdot t_{\rm R}}} \cdot \frac{{\rm e}^{\lambda \cdot t}}{N_0} , \qquad (3)$$

对上式进行变换并令
$$y = \ln\left(\frac{S}{t_{\rm L} \cdot p_{\gamma} \cdot \epsilon} \cdot \frac{t_{\rm R}}{1 - e^{-\lambda \cdot t_{\rm R}}} \cdot \frac{1}{N_0}\right)$$
,则

$$y = -\lambda \cdot t$$
, (4)

即将y = t做线性关联,其斜率即为 $-\lambda$,核素的半衰期 $T_{1/2} = \ln 2/\lambda$ 。尽管上式中含有待测参数 p_{γ} 和 λ ,但对于某一确定的射线,其 p_{γ} 是确定的,不影响对斜率的拟合,而能谱的测量时间 $t_{\rm R}$ 一般远小于待测核素的半衰期, $1 - e^{-\lambda \cdot t_{\rm R}} \approx 1$ 。

3 实验测量及数据处理

3.1 放射源的制备

放射源在HPGe 探测器上测量时距其表面约25 cm 以消除γ射线的符合相加效率。放射源为直径25 mm 的滤纸源,密封于有机玻璃制成的圆柱状源盒中。放 射源制备时,首先清洁有机玻璃源盒,在盒子底部平 铺上一层直径25 mm的滤纸并放在十万分之一天平上 称量,然后将放射性溶液小心地滴在源盒中滤纸的中 央,约50 mg 左右,记下放射性溶液的准确重量后从 天平上拿下源盒,阴干,盖上有机玻璃的源盒盖子并 用氯仿密封,制备出在HPGe 探测器上测量的放射性 源。放射性Lu同位素以及刻度探测器的⁶⁰Co,¹⁵²Eu、 ¹³³Ba 和²⁴¹Am 等放射源均按上述方法制备。

3.2 HPGe探测器的效率刻度

测量使用一个同轴P型HPGe 探测器,对⁶⁰Co 1332 keV γ 射线的能量分辨率为1.7 keV。探测器效 率刻度时首先用¹⁵²Eu 和¹³³Ba 放射源分别刻度了探 测器从122~1408 keV和53~384 keV之间的相对探 测效率,然后对¹⁵²Eu 刻度的244~1408 keV之间的 相对效率用3次多项式进行拟合,计算出⁶⁰Co 1173.2 和1332.5 keV射线以及¹³³Ba 356 keV射线的相对效 率,根据活度标准源⁶⁰Co的活度计算出绝对效率,将 上述相对效率曲线转换为绝对效率曲线,并和²⁴¹Am 放射源刻度的59.54 keV的绝对效率一起按下式拟合 出53~1408 keV之间的绝对探测效率:

$$\ln \varepsilon = \sum_{n=1}^{6} P_n \cdot \left(\ln E\right)^{2-n} , \qquad (5)$$

式中E为 γ 射线的能量,以keV为单位, ε 为探测器的 绝对效率。拟合系数列于表2,绝对效率的曲线示意于 图 1。在效率刻度中,所有核素的半衰期和 γ 射线发射 几率的数据均采用 ENDF/B V7.1 数据库的数据。拟合 的多项式很好地描述了 P型 HPGe 探测器在上述能量区 间的探测效率,各测点的实验值和拟合值的偏差在1% 以内。

表 2 P 型探测器绝对效率的拟合系数

 P_4

-3313.3

 P_5

 $9\,983.8$

 P_6

-13541

 P_3

606.9

	-5.6 -5.8
n <i>E</i>	-6.2 -6.4
1	$\begin{array}{c} -6.6 \\ -6.8 \\ -6.8 \\ -6.8 \end{array}$
	-7.0 -7.2 -7.2 -7.2 -3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
	$\ln E$

图 1 (在线彩图)P型探测器的绝对效率曲线

3.3 ¹⁷³Lu的半衰期和γ射线发射几率

在 6.75 a 的时间内,用上述 HPGe 探测器对 4 个 Lu 的放射性样品测量了 156 个能谱,分析了 173 Lu 特征 γ 射线的净峰面积,按式(4)进行数据处理并标绘于图 2, 拟合的斜率列于表 3,可见用不同射线的峰面积进行拟 合时线性都非常好(线性相关系数 \geq 0.9999),各斜率也 基本一致。 173 Lu 的衰变常数取上述各斜率平均值的相

反数,为1.511×10⁻⁸ s⁻¹,即¹⁷³Lu的半衰期为1.45 a,比目前评价的数据1.37 a高6.1%。

图 2 (在线彩图)¹⁷³Lu衰变常数的拟合图

表 3 ¹⁷³Lu主要γ射线峰强度与冷却时间线性拟合的结果

E_{γ}/keV	截距a	斜率b(×10 ⁻⁸)	线性相关系数R
78.6	-2.15	-1.515	-1
100.7	-2.97	-1.525	-1
171.4	-3.5	-1.519	-1
179.4	-4.28	-1.509	-0.9999
272.1	-1.52	-1.507	-1
636.1	-4.13	-1.506	-1
斜率平	^z 均值	-1.514	

采用新的衰变常数按照式(3)计算的¹⁷³Lu主要γ射 线的发射几率及其与ENDF/B 7.1 库评价数据的比较 见表4,可见主γ射线272.1 keV的发射几率为20.66%, 比评价结果偏低 2.53%, 78.6 keV γ 射线的发射几率与 评价结果基本一致,但636 keV γ射线的发射几率为 1.55%,比评价结果高约7.1%,其他射线的发射几率 则整体偏小,偏差在5.4%~3.4%之间。应该说明, 若采用旧的衰变常数,则测量的γ射线发射几率会比 ENDF/B 7.1 库的评价数据整体偏高10%以上,且会 显著增大测量数据的样本差,这主要由式(3)中 $e^{\lambda t}$ 项 的衰变常数λ不合理导致。这同时说明, 若测定了 ¹⁷³Lu的原子数且在远小于半衰期时间内就测定各γ 射线的强度,则衰变常数对γ射线发射几率测量结果的 影响不显著。但636 keV γ射线的发射几率偏高较大难 以理解,可能是当年标定的636 keV的探测效率较高所 致。

表 4 173Lu 主要 γ 射线的发射几率

	ENDF	/B 7.1	本日	二作	
屁重/keV	发射几率/%	不确定度/%	发射几率/%	样本差/%	— 与B (.1的)//// 为B (.11)///////////////////////////////////
78.6	11.87	3.60	11.81	1.12	-0.53
100.7	5.24	3.68	4.96	2.34	-5.40
171.4	2.90	4.92	2.80	0.54	-3.40

 P_1

1.676

 P_2

-61.18

/土吉 /

		23	失衣 4		
<u> </u>	ENDF	ENDF/B 7.1 本工作			
范里/ Ke V	发射几率/%	不确定度/%	发射几率/%	样本差/%	— 与B (.1的)偏左/ %
179.4	1.38	3.78	1.32	1.25	-4.62
272.1	21.20	3.63	20.66	0.64	-2.53
636.1	1.45	4.61	1.55	1.19	7.06

3.4 174g Lu的半衰期和 γ 射线发射几率

以^{174g}Lu的76.5 keV和1241.8 keVγ射线峰的强 度拟合^{174g}Lu衰变常数的情况如图3所示, 拟合的斜率 分别中 -6.304×10^{-9} s⁻¹和 -6.510×10^{-9} s⁻¹,线性 相关系数分别为0.9997和0.9999。由于^{174g}Lu半衰期 的测量只有2个半衰期,其准确程度尚需进一步提高。 同时由于^{174g}Lu的76.5 keV射线峰解谱时易受到干扰, ^{174g}Lu的衰变常数取^{174g}Lu的1241.8 keV γ 射线峰的 强度拟合结果,为 $6.51 \times 10^{-9} s^{-1}$,即其半衰期为3.37a,比评价结果3.31 a 高约1.8%。用该衰变常数和测 量数据计算出^{174g}Lu的76.5和1241.8 keV γ射线的发 射几率如表5所列。从表中可看出,与ENDF/B7.1库 的评价数据相比, γ射线的发射几率的实验测量值分 别低 1.87% 和 12.8%。1 241.8 keV γ 射线的发射几率偏 低较多的原因可能是该射线受天然环境本底中²¹⁴Bi 的1238.1 keV γ射线的影响。若探测器的通量分辨率 较差,则不可将这两个峰区分,导致计算的1241.8 keV γ 射线的发射几率偏高。本工作的 HPGe 探测器对 60 Co 1332 keV γ射线的能量分辨率为1.7 keV,分辨率较 高,同时在能谱处理时注意了²¹⁴Bi的1238.1 keV γ 射线的影响。图4给出了本工作探测器测量的1238.1 和1241.8 keV的γ射线能谱及解谱时峰面积的计算情 况。

图 4 (在线彩图)^{174g}Lu 1241.8 keV附近的能谱及其峰 面积计算示意图

表 5 ^{174g}Lu主要γ射线的发射几率

	ENDF/B 7.1		本工作		
范重/keV	发射几率/%	不确定度/%	发射几率/%	样本差/%	— 与B 7.1的/m 左/ %
76.5	5.93	4.77	5.82	2.93	-1.87
1241.8	5.14	2.53	4.48	1.29	-12.8

4 不确定度评定及测量结果推荐

4.1 半衰期测量的不确定度评定

半衰期测量结果的不确定度主要来源有测量计数的 统计不确定度,不同能量射线拟合结果之间的偏差,在 长期的测量过程中,监督源的变化量、谱仪的稳定性以 及未考虑到的其他影响(表 6)。

4.2 γ射线发射几率的不确定度评定

γ射线发射几率测量结果的不确定度A类评定主要 来源有测量计数的统计不确定度,不同能谱处理结果之 间的样本差。不确定度的B类评定来源主要有探测器效 率标定结果的不确定度,级联符合相加效应引入的不确 定度,质量称重引入的不确定度、质谱测量核数引入的 不确定度、谱仪的稳定性、堆积漏记以及未考虑到的其 他影响(表 7, 8)。

	表 6 半泵	t 期测量结果的个确定	E度评定	
不确定度来源	¹⁷³ Lu评定结果	^{174g} Lu评定结果	评定方法	说明
计数统计	< 0.1%	< 0.1%	А	
不同射线拟合结果间的标准偏差	0.5%	1.6%	А	不同射线拟合结果之间的统计偏差
监督源变化	< 0.5%	< 0.5%	В	
谱仪稳定性	< 0.1%	< 0.1%	В	
堆积漏记	< 0.1%	< 0.1%	В	配备快速前放,可忽略
其它	< 0.3%	< 0.3%	В	
合成不确定度(k=1)	0.8%	1.7%		
扩展不确定度(k=2)	1.6%	3.4%		

表	7	v射线发射几率测量结果不确定度的B类评定

	•	
不确定度来源	评定结果	说明
探测效率	$\begin{array}{l} 1.0\% ~(59.5{<}E_{\gamma}{<}122~{\rm keV}) \\ 0.5\% ~(122{<}E_{\gamma}{<}1408~{\rm keV}) \end{array}$	该探测器近年来使用此效率曲线参加了 ⁶⁰ Co、 ¹⁰⁹ Cd、 ^{152,155} Eu、 ¹³³ Ba、 ¹³⁴ Cs和 ²⁴¹ Am等活度比对,比活度测量结果均与比对推荐值在1.0%内一致。
级联符合相加效应	< 0.1%	放射源距离探测器达到25 cm
称重	0.1%	十万分之一精密天平
质谱测量	1.0%	包含标准物质和测量引入的不确定度
谱仪稳定性	< 0.1%	
堆积漏记	< 0.1%	配备快速前放,可忽略
其它	< 0.3%	a°
合成B类不确定度	$\begin{array}{l} 1.5\% \ (59.5 < E_{\gamma} < 122 \ \mathrm{keV}) \\ 1.2\% \ (122 < E_{\gamma} < 1408 \ \mathrm{keV}) \end{array}$	

		表 8	γ 射线发射几 ^{z}	率测量结果不确定度	评定结果	
核素	$E_{\gamma}/{\rm keV}$	发射几率/%	样本差/%	不确定度的B类 评定结果/%	合成标准不确定度/% $(k=1)$	扩展不确定度/% (k=2)
$^{173}\mathrm{Lu}$	78.6	11.81	1.12	1.5	1.9	3.7
	100.7	4.96	2.34	1.5	2.8	5.6
	171.4	2.80	0.54	1.2	1.3	2.6
	179.4	1.32	1.25	1.2	1.7	3.5
	272.1	20.66	0.64	1.2	1.4	2.7
_	636.1	1.55	1.19	1.2	1.7	3.4
$^{174 \mathrm{g}}\mathrm{Lu}$	76.5	5.82	2.93	1.5	3.3	6.6
	1241.8	4.48	1.29	1.2	1.8	3.5

4.3 测量结果推荐

根据测量和不确定度评定结果,本文给出¹⁷³Lu半 衰期推荐结果为(1.45±0.02) a,^{174g}Lu半衰期推荐结果 为(3.37±0.11) a。γ射线发射几率推荐结果为见表 9。

表 9 γ射线发射几率推荐值

	in o l	加以久加加十年日臣
核素	$E_{\gamma}/{\rm keV}$	发射几率推荐值/% (k=2)
$^{173}\mathrm{Lu}$	78.6	11.81 ± 0.44
	100.7	4.96 ± 0.28
	171.4	2.80 ± 0.07
	179.4	1.32 ± 0.05
	272.1	20.66 ± 0.56
	636.1	1.55 ± 0.05
^{174g} Lu	76.5	5.82 ± 0.38
	1241.8	4.48 ± 0.16

5 结论

经长期实验测量,测得¹⁷³Lu的半衰期为1.45 a, 比目前评价的数据1.37 a高6.1%。由于测量时间 接近¹⁷³Lu的5个半衰期,该结果的可信程度较高。 ^{174g}Lu半衰期的实测值为3.37 a,比评价数据3.31 a 高约1.8%,但由于测量时间只有^{174g}Lu的2个半衰 期,尚需进一步测量以提高准确度。尽管ENDF/B7.1 和JEFF 3.1.1两个评价数据库给出了比较一致的评 价结果,但目前的测量结果与评价结果均有一定的差 异,这也说明了对一些重要核数据开展实验测量的必 要性。^{174g}Lu的1241.8 keV在效率曲线上处于⁶⁰Co的 两条γ射线1173.224和1332.49 keV之间,该能量区 间效率值可靠性高,建议作为归一化值。实测的这些 衰变数据对准确测定¹⁷³Lu,^{174g}Lu的活度和¹⁷⁵Lu(n, 2n)^{174m,g}Lu(n, 2n)¹⁷³Lu反应的截面均具有重要作用。

参考文献:

- OECD Nuclear Energy Agency. [DB/OL].[2013-11-01]. http://www.oecd-nea.org/janis.
- [2] LI Zhiming, Deng Hu, Zhu Fengrong, et al. Journal of Chinese Mass Spectrometry Society, 2002, 23: 158. (in Chinese) (李志明, 邓虎, 朱凤蓉, 等. 质谱学报, 2002, 23: 158)
- [3] LI Zh-ming, Zhu Fengrong, Zhang Zibin, et al. Journal of

Chinese Mass Spectrometry Society, 2005, **26**(suppl.): 45. (in Chinese)

(李志明,朱凤蓉,张子斌,等.质谱学报,2005,26(增刊):45.)

 [4] LI Zhiming, REN Xiangjun, Deng Hu, et al. Journal of Chinese Mass Spectrometry Society, 2007, 28(suppl.): 90. (in Chinese)

(李志明, 任向军, 邓虎, 等. 质谱学报, 2007, 28(增刊): 90)

[5] XU Jiang, ZHU Fengrong, LI Zhiming, *et al.* Journal of Nuclear and Radiochemistry, 2007, **29**(1): 27. (in Chinese) (徐江, 朱凤蓉, 李志明, 等. 核化学与放射化学, 2007, **29**(1): 27.)

Measurements of Decay Data of ¹⁷³Lu and ^{174g}Lu

SHI Quanlin¹⁾, BAI Tao, LIU Jie, SHANG Jianbo, ZHANG Xiaolin, DAI Yihua

(Northwest Institute of Nuclear Technology, Xi'an 710024, China)

Abstract: ${}^{175}Lu(n,2n){}^{174m,g}Lu(n,2n){}^{173}Lu$ are important neutron reactions to monitor the high energy neutron fluxes and the residual nuclei, ^{174m,g}Lu and ¹⁷³Lu, are usually measured by a HPGe spectrometer conveniently so that the decay data such as half lives and gamma-ray emission probabilities of ^{174m,g}Lu and ¹⁷³Lu must be accurate. There are evaluated decay data only in ENDF/B 7.1 and JEFF 3.1.1 among the major evaluated nuclear data libraries, where the most data are almost same besides the gamma-ray emission probabilities of ¹⁷³Lu are higher in ENDF/B 7.1 than that in JEFF 3.1.1. Yb metal as a target was irradiated by 20 MeV proton beams on a tandem accelerator in CIAE to produce ^{174m,g}Lu and ¹⁷³Lu, and ¹⁷⁶Lu isotopic dilution methods based upon a laser resonance ionization mass spectrometer (LRIMS) and a thermal surface ionization mass spectrometer (TIMS) were employed to determine the numbers of nuclides of ¹⁷⁴Lu and ¹⁷³Lu in a solution containing the irradiated target. Several radioactive sources made from the solution had been measured by a HPGe detector during the past 7 years and the peak intensities of the characteristic gamma-rays from ^{174g}Lu and ^{173}Lu were analyzed to determine the half lives and gamma-ray emission probabilities. According to the measurements, the half life of ¹⁷³Lu is 1.45 a, which is about 6.1% longer than the evaluated 1.37 a, and the gamma-ray emission probabilities of ¹⁷³Lu is also different from the evaluated data, especially the emission probability of 636.1 keV gamma-ray of 173 Lu is 7% higher than the value in ENDF/B 7.1. The half life of 174g Lu is 3.37 a, about 1.8% longer than the evaluated 3.31 a, and the emission probabilities of 76.5 keV and 1241.8 keV gamma-rays of 174 Lu are 1.87% and 12.8% lower than the evaluated data in ENDF/B 7.1, respectively.

Key words: ¹⁷³Lu; ¹⁷⁴Lu; half life; gamma-ray emission probabilities; HPGe

Received date: 2 Jun. 2016; Revised date: 24 Aug. 2016

¹⁾ E-mail: Shiquanlin@nint.ac.cn.