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Abstract：Ground-state shape (phase) crossover in Er and Yb isotopes is manifested in the axially deformed

Nilsson mean-field plus extended pairing model. The energy ratio R0+
2 /2+

1
, the odd-even mass differences

and the information entropy are calculated under the present model, reproduce the shape (phase) crossover

behaviors of these quantities in 155−163Er and 157−165Yb isotopes. From the analysis of these quantities as

functions of the quadrupole deformation parameter and the overall pairing interaction strength, it is shown

that the crossover is mainly driven by the competition between the pairing interaction and the quadrupole

deformation, which thus provides the origin of the shape (phase) crossover in the present model.
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1 Introduction

Shape phase transitions which occur at zero tem-

perature may be manifested by a sudden change or

a crossover of the ground-state structure at a certain

critical value of the control parameter, it has been an-

alyzed extensively in both experiment and theory
[1]
.

These studies have provided new insights into under-

standing the evolution of nuclear structures, which can

be related to different geometrical shapes in nuclei
[2]
.

In atomic nuclei, quantum phase is often referred to

as the shape (phase) of a nucleus. Typical shape is of

spherical (vibrational), indefinite triaxial (γ-unstable),

or axially deformed (rotational) type, which is man-

ifested by the collective model
[3]

and the interacting

boson model (IBM)
[4]
. Shape (phase) crossover can

be observed at ground-state or low-lying states of nu-

clei along a chain of isotopes or isotones, in which no-

ticeable changes in physical quantities or called effec-

tive order parameters, such as energy ratios, B(E2)

ratios, and binding energy related quantities, are not

only predicted theoretically, but also experimentally

observed
[1]
. Rigorously speaking, the QPT (Quantum

Phase Transitions) should be defined in the thermody-

namic or large-N limit. Since the number of nucleon in

a nuclear system is always finite, instead of dramatic

changes or discontinuity in effective order parameters,

only a crossover with a finite-N effect from one shape

to another may be observed, especially at the critical

point of the transition
[5]
.

Recently, it has been experimentally observed that

the odd-even mass difference and some mass related

quantities, which are the most significant evidence

of pairing interaction, may exhibit critical behavior

around the neutron number N=90 in A ∼ 150 mass

region
[6–7]

, of which some relevant quantities can thus

be taken as effective order parameters of the evolu-

tion from spherical to axially deformed shape (phase).

Therefore, the shape (phase) evolution of nuclei in this

mass region should suitably be explored by the Nilsson

(deformed) mean-field plus paring model as shown in

our previous work
[8–11]

, with which the nature of the

critical behavior of the shape (phase) evolution driven

by the competition between the deformation and pair-

ing interaction can be revealed from related effective

order parameters. However, the nature of the critical

behavior, including the role of the quadrupole defor-

mation, is still far from being clear. Particularly, how

the competition between the pairing interaction and

the quadrupole deformation relate to the phase tran-

sition is yet to be resolved. Therefore, it is important

to explore possible microscopic mechanisms with an

appropriate pairing model that can account for the

ground-state shape phase transition reflected by the

Received date: 18 Sep. 2018； Revised date: 5 Oct. 2018

Foundation item: National Natural Science Foundation of China (11675071)

Biography: ZHAO Haichao(1992–), male, Tongliao, Inner Mongolia, Master student, working on nuclear structure;

E-mail: zhaohaichao physics@foxmail.com.

† Corresponding author: GUAN Xin, E-mail: guanxin@lnnu.edu.cn.

http://www.npr.ac.cn
http://www.npr.ac.cn
http://dx.doi.org/10.11804/NuclPhysRev.36.01.043
mailto:zhaohaichao_physics@foxmail.com
mailto:guanxin@lnnu.edu.cn


· 44 · 原 子 核 物 理 评 论 第 36卷

related odd-even effects in nuclei.

The purpose of this work is to systematically an-

alyze the ground-state shape phase transition in Yb,

Er isotopes within the axially deformed Nilsson mean-

field plus extended pairing model. The energy ratio

R0+
2 /2+

1
, odd-even mass differences, and the ground

state occupation probabilities of valence nucleon pairs

with different angular momenta of these nuclei will be

calculated. We examine the effects of both the pair-

ing interaction strength and the quadrupole deforma-

tion in the model, from which the role of the pair-

ing interaction and the quadrupole deformation in the

shape phase transition in these isotopes will also be

addressed.

2 The extended pairing model

The Hamiltonian of the deformed mean-field plus

extended pairing model
[8]

is given by

Ĥ =

p∑
i=1

ϵini−G

p∑
i,i′=1

b†i bi′ −G
∞∑

µ=2

1

(µ!)2
×

∑
i1 ̸=i2 ̸=···≠i2µ

b†i1b
†
i2
· · ·b†iµbiµ+1biµ+2 · · ·bi2µ , (1)

where p is the total number of Nilsson levels (orbits)

considered, G >0 is the overall pairing strength, ϵi
are the single-particle energies obtained from the ax-

ially deformed Nilsson model, ni = a†i↑ai↑ + a†i↓ai↓ is

the fermion number operator for the i-th Nilsson level,

and b†i = a†i↑a
†
i↓ [bi = (b†i )

† = ai↓ai↑] are pair creation

[annihilation] operators. The up and down arrows in

these expressions refer to time-reversed states. Besides

the usual Nilsson mean field and the standard pair-

ing interaction (the first two terms of Eq. (1)), this

form includes many-pair hopping terms that allow nu-

cleon pairs to simultaneously scatter (hop) between

and among different Nilsson levels. The advantage of

the model lies in the fact that it can be solved more

easily than the standard pairing model, especially for

well-deformed nuclei. Let |0⟩ be the pairing vacuum

state that satisfies

bi|0⟩=0 (2)

for 16 i6 p, following the algebraic Bethe ansatz used

in Ref. [8], one can write a k-pair eigenstate as

|k;ζ⟩ =
∑

16i1<···<ik6p

C
(ζ)
i1i2···ikb

†
i1
b†i2 · · ·b

†
ik
|0⟩, (3)

where C
(ζ)
i1i2···ik are expansion coefficients that need to

be determined. The expansion coefficient C
(ζ)
i1i2···ik can

be expressed very simply as

C
(ζ)
i1i2···ik =

1

1−χ(ζ)
∑k

µ=1 ϵiµ
, (4)

where χ(ζ) is a parameter that needs to be determined.

The k-pair eigenenergies of Eq. (1) are given by

E
(ζ)
k =

2

χ(ζ)
−G(k−1), (5)

where χ(ζ) should satisfy

2

χ(ζ)
+

∑
16i1<i2<···<ik6p

G

(1−χ(ζ)
∑k

µ=1 ϵiµ)
= 0, (6)

in which χ(ζ) is the ζ-th solution of Eq. (6). Similar re-

sults for even-odd systems can also be derived by using

this approach except that the index i of the level oc-

cupied by the single nucleon should be excluded from

the summation in Eq. (3) and Eq. (6) and the single-

particle energy ϵi contributing to the eigenenergy from

the first term of Eq. (1) should be included in Eq. (5).

Extensions to many broken-pair cases are thus straight-

forward.

3 The effective order parameter and
related quantities

In this section, the energy ratio R0+
2 /2+

1
as a func-

tion of the extended pairing interaction strength and

the quadrupole deformation parameter of the model is

analyzed. The ground-state information entropy are

also calculated to reveal the crossover.

As is known in Refs. [12–15], besides the odd-

even mass difference, the energy ratio R0+
2 /2+

1
=

(E0+
2
−E0+

g
)/(E2+

1
−E0+

g
) is also an effective order pa-

rameter to reveal the shape (phase) crossover in nuclei,

where E0+
2
−E0+

g
is the excitation energy of the second

0+ state calculated from the present model, and the

excitation energy of the first 2+ state, E2+
1
−E0+

g
, of

even-even nuclei is obtained according to the energy

formula of an axially deformed rotor

2ℑth

~2
=

6

E2+
1
−E0+

g

. (7)

In Eq. (7), the moment of inertia of the ground band

ℑth is calculated in the extended pairing model by us-

ing the Inglis cranking formula
[16]

ℑ=2~2
∑
n

|⟨n|Jx′ |0⟩|2

En−E0+
g

, (8)

where Jx′ is the total angular momentum along the

intrinsic x′ axis, |n⟩ is the n-th excited state of the

extended pairing model, En is the corresponding ex-

citation energy, and E0+
g

is the energy of the ground

state
[10]

. In principle, the summation in Eq. (8) should
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run over all excited states. As a good approximation,

only one broken-pair states are taken into account in

our calculations. This approximation is justified since

excited states with two or more broken pairs lie much

higher in energy above that of the ground state and

their contribution to the moment of inertia Eq. (8) is

negligible
[17]

.

In the following, we consider valence neutrons

(protons) within the sixth (fifth) major shell with

p = 22 (p = 16) Nilsson levels. In the Nilsson model,

only quadrupole deformation is considered with the

adjustable quadrupole deformation parameter ε2.

Fig. 1 shows the energy ratio R0+
2 /2+

1
as a function

of the pairing interaction strength G with a fixed defor-

mation parameter with ε2 =0.1, 0.125, 0.175, and 0.25

for k=3 neutron pairs over the p = 22 Nilsson levels.

Those ε2 values are the typical quadrupole deforma-

tion parameter values between 0.1 and 0.25 for the rare

earth nuclei which will be studied in the next section.

It is clearly shown in Fig. 1 that R0+
2 /2+

1
vary non-

monotonically with the increasing of G for all values

of ε2 considered. Particularly, there is a drastic change

around G∼0.007 8∼0.012 MeV, which demonstrates

the crossover in the present model, namely, the system

undergoes the shape (phase) crossover from an axially

deformed (rotational) shape with G=0 and R0+
2 /2+

1
∼

35 to the spherical (vibrational) shape with sufficiently

large G and R0+
2 /2+

1
∼ 2 for a given ε2 stuided. The re-

sults are quite similar to those of the interacting boson

model (IBM) in the U(5)-SU(3) transitional region
[13]

,

in which the energy ratio R0+
2 /2+

1
drops rather precip-

itously from the rotational limit with R0+
2 /2+

1
∼25 to

the vibrational limit with R0+
2 /2+

1
∼2.

Fig. 1 The energy ratio R
0+2 /2+1

in the present model

for k=3 neutron pairs over p=22 Nilsson levels as
a function of G (in MeV) for several typical values
of the deformation parameter ε2.

To further explore the nature of the crossover be-

havior in the present model, the information (Shannon)

entropy which seems suitable to reveal the crossover

due to the results in Refs. [18–19]. The information en-

tropy measures the correlations among the mean-field

single-pair product states with k pairs in the ground

state |g⟩≡ |k;ζ =1;νj′⟩ of the model, and is defined as

IH(|g⟩)=−
d∑

i=1

|wi|2 logd(|wi|2), (9)

where {wi = ⟨k|g⟩ are the expansion coefficients of |g⟩
in terms of the mean-field single-pair product states

|k⟩, and d is the dimension of the space spanned by

all possible single-pair product states, namely, k pairs

distributed over the p levels of the Nilsson mean-field.

The information entropy IH varies within the closed

interval [0, 1]. IH=0 corresponds to the ground state

without the pairing interaction among valence nucle-

ons. In this case, all valence nucleons are in the local-

ized normal state. While IH=1, the pairing interaction

is extremely strong leading the ground state to be a

valence nucleon pair condensate, which is referred to

as the delocalized superconducting phase. Obviously,

the variation of IH as a function of the pairing inter-

action strength G for a given value of the deformation

parameter sketches the evolution from the localized

normal phase towards the delocalized superconduct-

ing phase. As shown in Fig. 2, for the same set of val-

ues of the deformation parameters ε2 as that used in

Fig. 1, IH calculated from the present model indicates

that the system undergoes the crossover from the lo-

calized normal phase with G=0 and IH=0 to the delo-

calized superconducting (pair condensate) phase with

sufficiently large G and IH ∼ 1. Furthermore, there

is also a noticeable change in the information entropy

around G∼ 0.0078∼ 0.012 MeV for the four values of

the deformation parameter studied as shown in Fig. 2,

Fig. 2 The information entropy IH of the ground state
as functions of G (in MeV) for the same set of
values of the deformation parameter ε2 as that
used used in Fig. 3.
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which all correspond to the positions where R0+
2 /2+

1

and the occupation probabilities exhibit significant

changes as shown Fig. 1. Hence, the crossover behav-

ior shown Fig. 1 is further confirmed. All in all, the

ground-state shape (phase) crossover may be driven by

the competition between the pairing interaction and

quadrupole deformation.

4 Ground state critical behavior in Er
and Yb isotopes

In this section, the odd-even mass differences and

the energy ratio R0+
2 /2+

1
of 154−164Er and 156−164Yb

isotopes will be fitted by using the extended pairing

model as examples to reveal the crossover in realis-

tic nuclear systems, in which both valence neutrons

and protons are considered explicitly in the model.

The deformation parameter ε2 for each nucleus is ex-

tracted from experimental data
[20]

, which is provided

in Table 1. The pairing interaction strength G for each

nucleus is determined by fitting the binding energy,

the odd-even mass differences, and the first pairing

excitation energies in the model
[10]

, which is shown

in Table 2. The pairing interaction strength G for

each nucleus is determined by fitting the experimen-

tal value of the binding energy, the odd-even mass

differences, and the experimental value of the first

pairing excitation energies in the extended pairing

model
[10]

. The odd-even mass difference is defined as

P (Z,N) = EB(Z,N +1)+EB(Z,N − 1)− 2EB(Z,N),

where EB(Z,N) is the binding energy of a nucleus with

proton number Z and neutron number N . As shown in

Fig. 3, the theoretical P (Z,N) values are very close to

the corresponding experimental data. Moreover, both

the theoretical P (Z,N) values as functions of neutron

number N and the corresponding experimental values

for even-even 154−162Er and 156−164Yb shown in panel

(a) of Fig. 3 reach to its maximum at N=88. Simi-

lar crossover behavior can also be observed in P (Z,N)

values for the odd-A case as shown in panel (b), in

which P (Z,N) curves have a valley at N=89. It is

clearly shown that the odd-even mass difference serves

as one of the effective order parameters to identify the

ground-state crossover
[7, 11]

.

Moreover, in comparison with the crossover be-

havior shown in Fig. 1, the two distinguishable phases

of the model are the spherical (vibrational) shape

(phase) corresponding to R0+
2 /2+

1
∼2 and the axially

deformed (rotational) shape (phase) corresponding to

R0+
2 /2+

1
∼ 35. Fig. 4 presents both the theoretical and

the experimental values of the energy ratio R0+
2 /2+

1
of

154−164Er and 156−164Yb. The theoretical R0+
2 /2+

1
val-

ues are close to the corresponding experimental values

Table 1 The deformation parameter ε2 for 154−163Er and
156−165Yb extracted from experimental data

[20]
.

Nucleus ε2 Nucleus ε2

154Er 0.133 155Er 0.150
156Er 0.175 157Er 0.192
158Er 0.200 159Er 0.217
160Er 0.233 161Er 0.242
162Er 0.250 163Er 0.250
156Yb 0.117 157Yb 0.142
158Yb 0.150 159Yb 0.175
160Yb 0.192 161Yb 0.200
162Yb 0.208 163Yb 0.225
164Yb 0.242 165Yb 0.250

Table 2 The neutron (proton) pairing interaction
strength Gν (Gπ) (MeV) determined from the bind-
ing energies and the odd-even mass differences of
154−163Er, 156−165Yb.

Nucleus Gν Gπ Nucleus Gν Gπ

154Er 0.060 0 0.009 5 155Er 0.073 0 0.009 3
156Er 0.012 4 0.009 0 157Er 0.012 2 0.008 8
158Er 0.003 2 0.008 5 159Er 0.003 7 0.008 2
160Er 0.001 1 0.008 0 161Er 0.001 4 0.007 7
162Er 0.000 5 0.007 6 163Er 0.000 3 0.007 2
156Yb 0.059 0 0.014 1 157Yb 0.062 0 0.013 8
158Yb 0.011 0 0.013 3 159Yb 0.013 5 0.013 0
160Yb 0.003 1 0.012 8 161Yb 0.003 7 0.012 1
162Yb 0.001 0 0.011 7 163Yb 0.001 1 0.011 3
164Yb 0.000 4 0.010 9 165Yb 0.000 4 0.010 5

2.8

2.4

2.0
86 88 90 92 94

–1.8

–2.4

–3.0

85 87 89 91 93 95

(a)

(b)

Er Exp.

Er Th.

Yb Exp.

Yb Th.

Er Exp.

Er Th.

Yb Exp.

Yb Th.

P
P

N

Fig. 3 (color online)The odd-even mass differences (in
MeV) for 153−163Er and 155−165 Yb as functions
of neutron number N . Experimental values are
denoted as “Exp.”, which are taken from Ref. [21],
and the theoretical values calculated in the present
model are denoted as “Th.” for (a) the even-even
cases and (b) the odd-A cases.
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Fig. 4 (color online)The energy ratio of 154−164Er
and 156−164Yb as functions of neutron number
N . Experimental values are denoted as “Exp.”,
which are taken from Ref. [21], and the theoret-
ical values calculated in the present model are
denoted as “Th.”.

for the even-even nuclei considered. For 154Er (N=86)

and 156Er (N=88), the experimental and the theoret-

ical value of the energy ratio are around R0+
2 /2+

1
∼ 3

indicating a relatively stronger pairing interactions in

this nucleus, while the experimental value of R0+
2 /2+

1

for 164Er (N=96) is 13.69 corresponding to an axially

deformed phase with weaker pairing interactions. Sim-

ilarly, Yb isotopes exhibit the same pattern in Fig. 4.

For 156Yb (N=86) and 158Yb (N=88), the theoretical

value of the energy ratio is around R0+
2 /2+

1
∼ 3 and

both the experimental and the theoretical value of the

energy ratio for 164Yb (N=94) are around R0+
2 /2+

1
∼ 9

which also over cross the strong pairing interactions

phase, provide a sign of an axially deformed behav-

ior. Those results confirm the analysis for Er and Yb

isotopes in Fig. 3, the odd-even mass difference un-

dergo the shape (phase) crossover from the spherical

shape towards the axially deformed shape, in which

the even-even nuclei with N=88 and odd-A nuclei with

N=89 seem near to the critical point of the crossover.

Furthermore, as shown in Fig. 5, IH calculated from

the present model indicate that the system undergoes

the phase transition from the localized normal phase

with Gν=0 and IH=0 to the delocalized superconduct-

ing (pair condensate) phase with sufficiently large Gν

and IH ∼1 for 154−160Er. Particularly, the realistic

Gν value (red point in Fig. 5) crosses from the strong

pairing interactions phase for 154Er(N = 86) to the

localized normal phase for 160Er (N=92). This re-

sult is also consistent to the critical region shown in

Figs. 3∼4. Thus, this work provides a microscopic pic-

ture of the ground-state shape (phase) crossover which

may mainly be driven by the pairing interaction as re-

vealed in the present model.

Fig. 5 (color online)The information entropy IH (solid
line) of the ground state as functions of Gν (in
MeV) for 154−160Er , the red point indicate the the
corresponding Gν value.

5 Conclusion

In summary, the Nilsson mean-field plus extended

pairing model is applied to describe the ground-state

shape (phase) crossover in Er and Yb isotopes. It

is found that variation of the pairing interaction

strength G and the deformation parameter ε2 in the

model alters the energy ratio R0+
2 /2+

1
and the ground-

state occupation probabilities of valence nucleon pairs

with different angular momenta. When G is small,

the Nilsson mean-field is dominant, the system is in

the axially deformed (rotational) shape (phase) with

R0+
2 /2+

1
∼35. With the increasing of G, R0+

2 /2+
1
changes

non-monotonically for all the given ε2 values consid-

ered. Particularly, a drastic change occurs around

G∼0.007 8∼0.012 which marks the critical region of

the crossover in the present model. Furthermore, when

G is sufficiently large, the system is dominated by

the pairing interaction with R0+
2 /2+

1
∼2 correspond-

ing to the spherical (vibrational) (shape) phase. This

conclusion is consistent to that made in the SU(3)-

U(5) transitional analysis within the the interacting

boson model (IBM) framework previously
[13]

. It is

observed that a critical region of the crossover exists

as shown in the energy ratio R0+
2 /2+

1
for any value of

the quadrupole deformation parameter, which is jus-

tified from the analysis of the ground-state informa-

tion entropy of the model. Therefore, it seems that

the shape (phase) crossover in the current model is

mainly driven by the pairing interaction and less af-

fected by the quadrupole deformation. As shown in

our model fits to the energy ratio R0+
2 /2+

1
of 154−164Er

and 156−164Yb, the shape (phase) crossover indeed oc-

curs in these isotpose, among which 156Er and 158Yb

seem near to the critical point of the crossover. The en-
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ergy ratio R0+
2 /2+

1
and the information entropy of the

model all change noticeably within the critical region

of the crossover.
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Er, Yb同位素链的基态形状(量子相)酷越研究

赵海超，关 鑫
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(辽宁师范大学物理与电子技术学院，辽宁 大连 116029 )

摘要: 利用严格求解的Nilsson轴形变平均场加扩展对力模型，对Er和Yb同位素链基态形状 (量子相)酷越进行了

研究。通过该模型下能级比R0+
2 /2+

1
、奇偶能差、信息熵的计算，成功地再现了 155−163Er和 157−165Yb同位素相关

物理量的形状 (量子相)酷越行为。通过分析这些量随着四极形变参数和总体对力强度的变化过程，显示了这种酷越

行为主要是由于对力强度与四极形变之间的竞争导致的，该结果揭示了本模型下的基态形状 (量子相)酷越行为的来

源。
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