高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于HIAF的物理研究(英文)

周小红

周小红. 基于HIAF的物理研究(英文)[J]. 原子核物理评论, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339
引用本文: 周小红. 基于HIAF的物理研究(英文)[J]. 原子核物理评论, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339
ZHOU Xiaohong. Physics Opportunities at the New Facility HIAF[J]. Nuclear Physics Review, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339
Citation: ZHOU Xiaohong. Physics Opportunities at the New Facility HIAF[J]. Nuclear Physics Review, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339

基于HIAF的物理研究(英文)

doi: 10.11804/NuclPhysRev.35.04.339
基金项目: 国家自然科学基金资助项目(11735017);中国科学院基础研究基金资助项目(QYZDJ-SSW-SLH041)
详细信息
  • 中图分类号: O571.6;TL56

Physics Opportunities at the New Facility HIAF

Funds: National Natural Science Foundation of China (11735017); Fundamental Research Funds of Chinese Academy of Sciences (QYZDJ-SSW-SLH041)
  • 摘要: 在2010年,中国科学院近代物理研究所向国家发展和改革委员会建议了重大科技基础设施——强流重离子加速器装置(High Intensity Heavy-ion Accelerator Facility,简称HIAF)。经过一系列评估和论证,HIAF于2015年12月被国家发展改革委立项。HIAF建设地址位于广东省惠州市,计划于2018年年底正式开工建造。HIAF由超导直线加速器、同步增强器、高能放射性束流线、储存环谱仪以及若干实验测量装置构成,总投资约为25亿人民币。依托HIAF,我们将拓展核素存在版图,研发先进实验技术和方法,开展前沿物理研究;同时,开展重离子束应用研究,服务国家经济社会发展。简要介绍拟建的加速器系统、实验测量装置以及相关的物理研究计划。


    The Institute of Modern Physics, Chinese Academy of Sciences, proposed the Major National Science and Technology Infrastructure Facility named as High Intensity Heavy-ion Accelerator Facility (HIAF) in 2010. After a series of assessments charged by the National Development and Reform Commission of China, HIAF was officially approved by China government in December, 2015. HIAF will be constructed in Huizhou, Guangdong Province, and the groundbreaking ceremony of construction is scheduled around the end in the year of 2018. HIAF is composed of a superconducting Linac, a booster ring, a high-energy radioactive beam line, a storage ring, and a number of experiment setups. The total investment of HIAF is about 2.5 billion Chinese Yuan. The major goals for HIAF are to explore the hitherto unknown territories in nuclear chart, to approach the experimental limits, to open new domains of physics researches in experiments, and to develop new ideas and heavy-ion applications beneficial to the societies. In this paper, the accelerator complex of HIAF is briefly introduced, and the experimental setups and associated physics research program are presented.
  • [1] XIAO G Q, XU H S, WANG S C. Nuclear Physics Review, 2017, 34(3):275. (in Chinese) (肖国青, 徐瑚珊, 王思成. 原子核物理评论, 2017, 34(3):275.)
    [2] ZHOU X H. Nuclear Physics News, 2016, 26(2):4.
    [3] GRIESER M, LITVINOV Yu A, RAABE R, et al. Eur Phys J Special Topics, 2012, 207:1.
    [4] GHIORSO A, YASHITA S, LEINO M, et al. Nucl Instr and Meth A, 1988, 269:192.
    [5] LEINO M. Nucl Instr and Meth B, 2003, 204:129.
    [6] ZHANG Z Y, MA L, GAN Z G, et al. Nucl Instr and Meth B, 2013, 317:315.
    [7] ZAGREBAEV V I, GREINER W. Phys Rev C, 2013, 87:034608.
    [8] SAITO T R, RAPPOLD C, BERTINI O, et al. Nucl Phys A, 2016, 954:199.
    [9] GUPTA S, LUO X F, MOHANTY B, et al. Science, 2011, 332:1525.
    [10] NuPECC Long Range Plan 2017:Perspectives for Nuclear Physics, available on the web at http://www.nupecc.org.
    [11] Reaching for the Horizon:The Long Rang Plan for Nuclear Science, available on the web at https://science.energy.gov/np/nsac.
    [12] YAMAGUCHI T, HACHIUMA I, KITAGAWA A, et al. Phys Rev Lett, 2011, 107:032502.
    [13] KANUNGO R, HORIUCHI W, HAGEN G, et al. Phys Rev Lett, 2016, 117:102501.
    [14] KANUNGO R, NOCIFORO C, PROCHAZKA A, et al. Phys Rev Lett, 2009, 102:152501.
    [15] Scientific Program of the Super-FRS Collaboration:Report of the collaboration to the FAIR management, available on the web at https://www.gsi.de/en/researchaccelerators/fair.htm.
    [16] SPIES W, UWIRA O, MULLER A, et al. Nucl Instr and Meth B, 1995, 98:158.
    [17] WEN W Q, MA X, XU W Q, et al. Nucl Instr and Meth B, 2013, 317:731.
    [18] MEI B, AUMANN T, BISHOP S, et al. Phys Rev C, 2015, 92:035803.
    [19] ZAMORA J C, AUMANN T, BAGCHI S, et al. Phys Lett B, 2016, 763:16.
    [20] ZAMORA J C, AUMANN T, BAGCHI S, et al. Phys Rev C, 2017, 96:034617.
    [21] TU X L, XU H S, WANG M, et al. Phys Rev Lett, 2011, 106:112501.
    [22] ZHANG Y H, XU H S, LITVINOV Yu A, et al. Phys Rev Lett, 2012, 109:102501.
    [23] XU X, ZHANG P, SHUAI P, et al. Phys Rev Lett, 2016, 117:182503.
    [24] XING Y M, LI K A, ZHANG Y H, et al. Phys Lett B, 2018, 781:358.
    [25] HAUSMANN M, ATTALLAH F, BECKERT K, et al. Nucl Instr and Meth A, 2000, 446:569.
    [26] TU X L, WANG M, LITVINOV Yu A, et al. Nucl Instr and Meth A, 2011, 654:213.
    [27] SHUAI P, XU X, ZHANG Y H, et al. Nucl Instr and Meth B, 2016, 376:311.
    [28] HUANG W J, AUDI G, WANG M, et al. Chin Phys C, 2017, 41:030002.
    [29] WANG M, AUDI G, KONDEV F G, et al. Chin Phys C, 2017, 41:030003.
  • [1] 肖国青, 徐瑚珊, 王思成.  HIAF及CiADS项目进展与展望 . 原子核物理评论, 2017, 34(3): 275-283. doi: 10.11804/NuclPhysRev.34.03.275
    [2] 闫铎, 岳珂, 孙志宇, 王世陶, 余玉洪, 章学恒, 唐述文, 方芳, 陈俊岭, 周勇, 孙宇, 王兆民, 孙亚洲.  HIRFL-CSR ETF多层CsI(Tl)望远镜探测器能量刻度方法 . 原子核物理评论, 2016, 33(4): 455-460. doi: 10.11804/NuclPhysRev.33.04.455
    [3] 耿超, 李孝远, 林熠, 罗春华, 谢文刚, 邓玉良, 李达.  FPGA配置片反熔丝PROMs加速器地面单粒子效应特性研究 . 原子核物理评论, 2016, 33(3): 358-364. doi: 10.11804/NuclPhysRev.33.03.358
    [4] 范丽仙, 罗诗裕, 邵明珠.  正弦平方势与环形加速器的弯晶束流引出 . 原子核物理评论, 2011, 28(1): 63-67. doi: 10.11804/NuclPhysRev.28.01.063
    [5] 叶 飞, 李强, #.  重离子治癌相关研究 . 原子核物理评论, 2010, 27(3): 309-316. doi: 10.11804/NuclPhysRev.27.03.309
    [6] 肖国青.  强流加速器材料研究 . 原子核物理评论, 2006, 23(2): 146-150. doi: 10.11804/NuclPhysRev.23.02.146
    [7] 何明, 姜山, 董克君, 武绍勇.  加速器质谱技术在核物理与天体物理中的应用 . 原子核物理评论, 2004, 21(3): 210-213. doi: 10.11804/NuclPhysRev.21.03.210
    [8] 杨泗春, 孟杰.  放射性核束为核物理和核天体物理提供的新机遇 . 原子核物理评论, 1999, 16(3): 187-191. doi: 10.11804/NuclPhysRev.16.03.187
    [9] 徐春成, 叶沿林, 郭华.  对加速器驱动洁净核能系统散裂靶问题的探讨 . 原子核物理评论, 1998, 15(2): 115-120. doi: 10.11804/NuclPhysRev.15.02.115
    [10] 赵志祥.  加速器驱动的洁净核能系统国际研究进展 . 原子核物理评论, 1997, 14(2): 121-124. doi: 10.11804/NuclPhysRev.14.02.121
    [11] 卫增泉.  重离子生物效应研究中的一些基本物理问题 . 原子核物理评论, 1996, 13(1): 40-46. doi: 10.11804/NuclPhysRev.13.01.040
    [12] 于敏, 胡仁宇, 杜祥琬, 江文勉, 郑绍唐, 力光伦.  中国工程物理研究院的核物理、核技术及相关学科的研究 . 原子核物理评论, 1995, 12(4): 1-5. doi: 10.11804/NuclPhysRev.12.04.001
    [13] 杨治虎, 景成祥, 王灵霞.  重离子惯性聚变的研究 . 原子核物理评论, 1994, 11(1): 61-64. doi: 10.11804/NuclPhysRev.11.01.061
    [14] 黄业成.  放射性束加速器与放射性束物理(续完) . 原子核物理评论, 1994, 11(1): 29-31. doi: 10.11804/NuclPhysRev.11.01.029
    [15] 卫增泉, 刘玉岩, 王桂玲, 陈学兵, 李惠玲, 杨汉民, 汪丽虹, 高清祥, 王崇英, 王亚馥.  6MeV/u 12C6+离子对四种作物种子的生物学效应研究 . 原子核物理评论, 1993, 10(3): 61-64. doi: 10.11804/NuclPhysRev.10.03.061
    [16] 叶峰.  兰州重离子研究装置的现状 . 原子核物理评论, 1993, 10(3): 15-18. doi: 10.11804/NuclPhysRev.10.03.015
    [17] 夏佳文, 饶亦农, 原有进.  兰州重离子加速器冷却贮存环的初步设想 . 原子核物理评论, 1993, 10(3): 69-72. doi: 10.11804/NuclPhysRev.10.03.069
    [18] 黄业成.  放射性束加速与放射性束物理(续,中篇) . 原子核物理评论, 1993, 10(4): 25-29. doi: 10.11804/NuclPhysRev.10.04.025
    [19] 黄业成.  放射性束加速与放射性束物理 . 原子核物理评论, 1993, 10(2): 40-45. doi: 10.11804/NuclPhysRev.10.02.040
    [20] 孙韵敏.  治疗癌症用的轻离子加速器 . 原子核物理评论, 1992, 9(4): 51-53. doi: 10.11804/NuclPhysRev.09.04.051
  • 加载中
计量
  • 文章访问数:  894
  • HTML全文浏览量:  164
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 刊出日期:  2018-12-20

基于HIAF的物理研究(英文)

doi: 10.11804/NuclPhysRev.35.04.339
    基金项目:  国家自然科学基金资助项目(11735017);中国科学院基础研究基金资助项目(QYZDJ-SSW-SLH041)
  • 中图分类号: O571.6;TL56

摘要: 在2010年,中国科学院近代物理研究所向国家发展和改革委员会建议了重大科技基础设施——强流重离子加速器装置(High Intensity Heavy-ion Accelerator Facility,简称HIAF)。经过一系列评估和论证,HIAF于2015年12月被国家发展改革委立项。HIAF建设地址位于广东省惠州市,计划于2018年年底正式开工建造。HIAF由超导直线加速器、同步增强器、高能放射性束流线、储存环谱仪以及若干实验测量装置构成,总投资约为25亿人民币。依托HIAF,我们将拓展核素存在版图,研发先进实验技术和方法,开展前沿物理研究;同时,开展重离子束应用研究,服务国家经济社会发展。简要介绍拟建的加速器系统、实验测量装置以及相关的物理研究计划。


The Institute of Modern Physics, Chinese Academy of Sciences, proposed the Major National Science and Technology Infrastructure Facility named as High Intensity Heavy-ion Accelerator Facility (HIAF) in 2010. After a series of assessments charged by the National Development and Reform Commission of China, HIAF was officially approved by China government in December, 2015. HIAF will be constructed in Huizhou, Guangdong Province, and the groundbreaking ceremony of construction is scheduled around the end in the year of 2018. HIAF is composed of a superconducting Linac, a booster ring, a high-energy radioactive beam line, a storage ring, and a number of experiment setups. The total investment of HIAF is about 2.5 billion Chinese Yuan. The major goals for HIAF are to explore the hitherto unknown territories in nuclear chart, to approach the experimental limits, to open new domains of physics researches in experiments, and to develop new ideas and heavy-ion applications beneficial to the societies. In this paper, the accelerator complex of HIAF is briefly introduced, and the experimental setups and associated physics research program are presented.

English Abstract

周小红. 基于HIAF的物理研究(英文)[J]. 原子核物理评论, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339
引用本文: 周小红. 基于HIAF的物理研究(英文)[J]. 原子核物理评论, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339
ZHOU Xiaohong. Physics Opportunities at the New Facility HIAF[J]. Nuclear Physics Review, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339
Citation: ZHOU Xiaohong. Physics Opportunities at the New Facility HIAF[J]. Nuclear Physics Review, 2018, 35(4): 339-349. doi: 10.11804/NuclPhysRev.35.04.339
参考文献 (29)

目录

    /

    返回文章
    返回