Abstract:
High purity germanium detectors are widely employed for gamma ray measurements in nuclear spectroscopy experiments at the moment. The application of high voltage during operation necessitates stringent monitoring and control conditions. Traditional manual observation-based monitoring methods prove inefficient and slow in response, often resulting in varying degrees of detector damage. To address this issue, real-time temperature changes in the high purity germanium detector are converted into resistance value measurements using Pt100 sensors. Subsequently, a high-voltage module controller is designed and implemented to establish a protection system for the high purity germanium detector's high voltage supply. The hardware and logic of the controller are meticulously designed, while noise reduction algorithms are studied to enhance performance. Finally, circuit tests validate that the developed system automatically cuts off the high voltage when the detector temperature exceeds an upper threshold and restores it when the temperature falls below a lower threshold. This system effectively meets real-time protection requirements for high-voltage applications with respect to high purity germanium detectors.