高级检索

300 MeV质子重离子同步加速器慢引出动力学研究

Study on Slow Extraction Dynamics of 300 MeV Proton and Heavy Ion Synchrotron

  • 摘要: 300 MeV质子重离子同步加速器是SESRI (空间环境模拟研究装置)的重要组成部分,慢引出系统动力学研究是该同步环设计的关键。引出系统采用三阶共振慢引出与RF-Knockout(RF-KO)方案为终端提供2~8 s准连续束,在引出静电偏转板处利用3-bump局部凸轨可适当调节螺距和引出角度,但同时也会减小水平工作点,缩小相空间稳定区面积,影响束流正常引出。模拟结果表明,凸轨内二极磁铁和六极磁铁会引起水平工作点减小,造成引出初始阶段粒子大量溢出。因此,基于自主编写的粒子追踪程序SESP对束流时间结构进行了分析,并通过优化激励调幅曲线改善了束流时间结构的均匀性。

     

    Abstract: The 300 MeV proton and heavy ion accelerator is an important component of the SESRI(Space Environment Simulation and Research Infrastructure), and the study on slow extraction dynamics is the key part of the accelerator. The third order resonance and RF-Knockout(RF-KO) scheme is adopted to provide quasi-continuous beam in 2~8 s for slow extraction system. 3-bump are used to adjust the spiral step and extraction angle at the electrostatic septum. However, the horizontal tune can be reduced due to the bump orbit, and the stable area in the phase space is shrunk during the extraction flattop. Simulation results show that the bump orbit produced in the dipole and sextupole magnet will reduce the horizontal tune, and a large number of particles are extracted at the initial extraction stage. Therefore, the spill structure should be analyzed and optimized based on the self-written particle tracking program SESP. The extracted beam uniformity is improved by modulating the amplitude of the extraction exciter.

     

/

返回文章
返回